Как построить теплицу подешевле. Недорогая теплица для дачи своими руками из подручных материалов: особенности строительства, как построить и чем накрыть. Преимущества и недостатки теплиц из различных материалов

Солнечные батареи - источник получения энергии, которую можно направить на выработку электричества или тепла для малоэтажного дома. Вот только солнечные батареи имеют высокую стоимость и недоступны большинству жителей нашей страны. Согласны?

Другое дело, когда сделана солнечная батарея своими руками - затраты значительно уменьшаются, а работает такая конструкция ничуть не хуже, чем панель промышленного производства. Поэтому, если вы всерьез задумываетесь о приобретении альтернативного источника электроэнергии, попытайтесь сделать его своими руками – это не очень сложно.

В статье речь пойдет об изготовлении солнечных батарей. Мы расскажем, какие материалы, и инструменты для этого потребуются. А немного ниже вы найдете пошаговую инструкцию с иллюстрациями, которые наглядно демонстрируют ход работы.

Энергию солнца можно преобразовать в тепловую, когда энергоносителем является жидкость-теплоноситель или в электрическую, собираемую в аккумуляторах. Батарея представляет собой генератор, работающий на принципе фотоэлектрического эффекта.

Преобразование энергии солнца в электроэнергию происходит после попадания солнечных лучей на пластины-фотоэлементы, которые являются основной частью батареи.

При этом световые кванты “отпускают” свои электроны с крайних орбит. Эти свободные электроны дают электрический ток, который проходит через контроллер и скапливается в аккумуляторе, а оттуда поступает энергопотребителям.

Галерея изображений

Материалы для создания солнечной пластины

Приступая к сооружению солнечной батареи необходимо запастись следующими материалами:

  • силикатные пластины-фотоэлементы;
  • листы ДСП, алюминиевые уголки и рейки;
  • жёсткий поролон толщиной 1,5-2,5 см;
  • прозрачный элемент, выполняющий роль основания для кремниевых пластин;
  • шурупы, саморезы;
  • силиконовой герметик для наружных работ;
  • электрические провода, диоды, клеммы.

Количество требуемых материалов зависит от размера вашей батареи, которая чаще всего ограничивается количеством доступных фотоэлементов. Из инструментов вам понадобиться: шуруповёрт или набор отвёрток, ножовка по металлу и дереву, паяльник. Для проведения испытаний готовой батареи понадобиться тестер-амперметр.

Теперь рассмотрим самые важные материалы более подробно.

Кремниевые пластины или фотоэлементы

Фотоэлементы для батарей бывают трёх видов:

  • поликристаллические;
  • монокристаллические;
  • аморфные.

Поликристаллические пластины характеризуются низким КПД. Размер полезного действия составляет около 10 – 12 %, но зато этот показатель не понижается с течением времени. Продолжительность работы поликристаллов – 10 лет.

Солнечную батарею собирают из модулей, которые в свою очередь составляют из фотоэлектрических преобразователей. Батареи с жесткими кремниевыми фотоэлементами представляют собой некий сэндвич с последовательно расположенными слоями, закрепленными в алюминиевом профиле

Монокристаллические фотоэлементы могут похвастаться более высоким КПД – 13-25% и долгими сроками работы – свыше 25 лет. Однако со временем КПД монокристаллов снижается.

Монокристаллические преобразователи получают путем пиления искусственно выращенных кристаллов, что и объясняет наиболее высокую фотопроводимость и производительность.

Пленочные фотопреобразователи получают путем нанесения тонкого слоя аморфного кремния на полимерную гибкую поверхность

Гибкие батареи с аморфным кремнием – самые современные. Фотоэлектрический преобразователь у них напылен или наплавлен на полимерную основу. КПД в районе 5 – 6 %, но пленочные системы крайне удобны в укладке.

Пленочные системы с аморфными фотопреобразователями появились сравнительно недавно. Это предельно простой и максимально дешевый вид, но быстрее соперников теряющий потребительские качества.

Нецелесообразно использовать фотоэлементы разного размера. В данном случае максимальный ток, вырабатываемый батарей, будет ограничен током наиболее маленького по размеру элемента. Значит, более крупные пластины не будут работать на полную мощность.

При покупке фотоэлементов поинтересуйтесь у продавца способом доставки, большинство продавцов используют метод воскования, чтобы предотвратить разрушение хрупких элементов

Чаще всего для самодельных батарей используются моно- и поликристаллические фотоэлементы размером 3х6 дюймов, которые можно заказать в интернет-магазинах типа Е-бай.

Стоимость фотоэлементов достаточно высока, но многие магазины продают так называемые элементы группы В. Изделия, отнесённые к этой группе имеют брак, но пригодны к использованию, а их стоимость ниже, чем у стандартных пластин на 40-60%.

Большинство интернет-магазинов продают фотоэлементы комплектами по 36 или 72 фотоэлектрической преобразовательной пластины. Для соединения отдельных модулей в батарею потребуются шины, для подключения к системе нужны будут клеммы.

Галерея изображений

Солнечная батарея может использоваться в качестве резервного энергоисточника при частом отключении централизованного энергоснабжения. Для автоматического переключения необходимо предусмотреть систему бесперебойного питания.

Подобная система удобна тем, что при использовании традиционного источника электроэнергии одновременно производится зарядка . Оборудование обслуживающее гелиобатарею размещается внутри дома, поэтому необходимо предусмотреть для него специальное помещение.

Одним из способов сократить оплату коммунальных услуг является использование солнечных батарей. Такую батарею можно сделать и установить своими руками.

Что представляет собой солнечная батарея и для чего она используется?

Солнечная батарея - это устройство, принцип работы которого основан на способности фотоэлементов преобразовывать энергию солнца в электричество. Эти преобразователи соединены между собой в общую систему. Получаемый электрический ток накапливается в специальных устройствах - аккумуляторах.

Чем больше площадь панелей, тем больше электрической энергии можно получить

Мощность солнечной батареи зависит от размера поля из фотоэлементов. Но это не означает, что только большие площади способны воспроизвести требуемое количество электроэнергии. Например, всем знакомые калькуляторы могут использовать портативные солнечные батареи, которые вмонтированы в их корпус.

Преимущества и недостатки

К преимуществам солнечной батареи относятся:

  • простота монтажа и обслуживания;
  • отсутствие вреда для окружающей среды;
  • небольшая масса панелей;
  • бесшумная работа;
  • независящие от распределительной сети поставки электрической энергии;
  • неподвижность элементов конструкции;
  • небольшие денежные затраты на изготовление;
  • долгий срок эксплуатации.

В число недостатков солнечной батареи входят:

  • трудоёмкость процесса изготовления;
  • бесполезность в тёмное время суток;
  • потребность в большой площади для установки;
  • восприимчивость к загрязнениям.

Хотя изготовление солнечной батареи является трудоёмким процессом, её можно собрать своими руками.

Инструменты и материалы

Если нет возможности приобрести готовую солнечную батарею для дома, её можно сделать самостоятельно.

Для изготовления солнечной батареи понадобятся:

  • фотоэлементы (для создания гелиопанели);
  • набор специальных проводников (для соединения фотоэлементов);
  • алюминиевые уголки (для корпуса);
  • диоды Шотке;
  • крепёжные метизы;
  • винты для крепежа;
  • лист поликарбоната (прозрачный);
  • силиконовый герметик;
  • паяльник.

Выбор фотоэлементов

Сегодня производители предлагают потребителям выбор из двух типов устройств. Фотоэлементы из монокристаллического кремния имеют КПД до 13%. Они отличаются низкой эффективностью при пасмурной погоде. Фотоэлементы из поликристаллического кремния имеют КПД до 9%, однако они способны работать не только в солнечные, но и в облачные дни.

Чтобы обеспечить дачу или небольшой частный дом электроэнергией, достаточно воспользоваться поликристаллами.

Важная информация: Желательно приобретать фотоэлементы у одного производителя, так как ячейки разных марок могут иметь существенные различия, что сказывается на эффективности работы и процессе сборки, а также приводит к более высоким затратам энергии при эксплуатации.

При выборе фотоэлементов необходимо обратить внимание на следующее:

  • чем больше ячейка, тем большее количество энергии она производит;
  • элементы одного типа создают одинаковое напряжение (от размера данный показатель не зависит).

Чтобы определить мощность солнечной батареи, достаточно генерируемый ток умножить на напряжение.

Отличить поликристаллические фотоэлементы от монокристаллических достаточно просто. Первый тип выделяется ярко-синим цветом и квадратной формой. Монокристаллические фотоэлементы темнее, они срезаны по краям.


Поли- и монокристаллические панели легко отличить даже на первый взгляд

Не стоит отдавать предпочтение продукции со сниженной ценой, поскольку она может отказаться отбраковкой - это детали, которые не прошли тест на заводе. Лучше воспользоваться услугами проверенных поставщиков, которые хоть и предлагают товар по высокой цене, зато отвечают за его качество. Если нет опыта в сборе фотоэлементов, рекомендуется приобрести несколько тестовых образцов, чтобы потренироваться, а только потом купить продукцию для изготовления самой батареи.

Некоторые производители запаивают фотоэлементы в воск, чтобы предотвратить порчу во время перевозки. Однако избавиться от него довольно сложно из-за высокого риска повреждения пластин, поэтому рекомендуется покупать фотоэлементы без воска.

Инструкция по изготовлению

Процесс изготовления солнечной батареи состоит из нескольких этапов:

  1. Подготовка фотоэлементов и пайка проводников.
  2. Создание корпуса.
  3. Сборка элементов и герметизация.

Подготовка фотоэлементов и пайка проводников

На столе собирается набор фотоячеек. Допустим, производитель указывает на мощность 4 Вт и напряжение 0,5 вольт. В таком случае нужно использовать 36 фотоэлементов, чтобы создать солнечную батарею на 18 Вт.

С помощью паяльника, мощность которого составляет 25 Вт, наносятся контуры, образуя припаянные проводки из олова.


Качество пайки является главным требованием для эффективной работы солнечной батареи

Важная информация: Желательно выполнять процесс пайки на ровной твёрдой поверхности.

Затем все ячейки соединяются между собой в соответствии с электрической схемой. При подключении солнечной панели можно воспользоваться одним из двух способов: параллельным или последовательным соединением. В первом случае плюсовые клеммы соединяются с плюсовыми, минусовые с минусовыми. Затем клеммы с разным зарядом выводятся к аккумулятору. Последовательное подключение предусматривает соединение противоположных зарядов путём поочерёдного скрепления ячеек между собой. После этого оставшиеся концы выводятся к аккумуляторной батарее.

Важная информация: Независимо от того, какой вид подключения вы выбрали, необходимо предусмотреть шунтирующие диоды, которые устанавливаются на клемме «плюс». Идеально подходят диоды Шорке. Они препятствуют разрядке устройства ночью.

Когда спайка будет завершена, нужно вынести ячейки на солнце, чтобы проверить их работоспособность. Если функциональность в норме, можно начинать сборку корпуса.


Проверка устройства выполняется на солнечной стороне

Как собрать корпус

  • Подготовить уголки из алюминия с невысокими бортиками.
  • Для метизов предварительно выполняются отверстия.
  • Затем на внутреннюю часть алюминиевого уголка наносится силиконовый герметик (желательно сделать два слоя). От того, насколько качественно он будет нанесён, зависит герметичность, а также длительность службы солнечной батареи. Важно обратить внимание на отсутствие незаполненных мест.
  • После этого в раму помещается прозрачный лист поликарбоната и плотно фиксируется.
  • Когда герметик высохнет, крепятся метизы с шурупами, что обеспечит более надёжное крепление.

Учитывая хрупкость конструкции, рекомендуется сначала создать каркас, а затем только устанавливать фотоэлементы

Важная информация: Кроме поликарбоната можно использовать оргстекло или антибликовое стекло.

Сборка элементов и герметизация

  • Очистите прозрачный материал от загрязнений.
  • Разместите фотоэлементы на внутренней стороне листа из поликарбоната на расстоянии 5 мм между ячейками. Чтобы не ошибиться, предварительно сделайте разметку.
  • На каждый фотоэлемент нанесите монтажный силикон.

Чтобы продлить срок службы солнечной батареи, рекомендуется нанести на её элементы монтажный силикон и закрыть задней панелью
  • После этого прикрепляется задняя панель. После застывания силикона нужно герметизировать всю конструкцию.

Герметизация конструкции обеспечит плотное прилегание панелей друг к другу

Видео: Изготовление солнечной батареи своими руками в домашних условиях

Правила установки

Чтобы получить возможность использовать солнечную батарею по максимуму, рекомендуется при установке устройства придерживаться определённых правил:

  1. Необходимо правильно выбрать место. Если разместить солнечную батарею там, где постоянно присутствует тень, устройство будет малоэффективно. Исходя из этого, не рекомендуется устанавливать прибор около деревьев, желательно выбирать открытое место. Многие монтируют солнечную батарею на крыше дома.
  2. При установке необходимо направлять устройство в сторону солнца. Нужно добиться максимального попадания его лучей на фотоэлементы. К примеру, находясь на севере, следует ориентировать лицевую сторону солнечной батареи на юг.
  3. Большую роль играет определение уклона устройства. Он также зависит от географического положения. Считается, что угол уклона должен составлять широту, в которой устанавливается батарея. При размещении в зоне экватора придётся производить настройку угла наклона по времени года. Коррекция составит 12 градусов, учитывая увеличение и уменьшение летом и зимой соответственно.
  4. Рекомендуется установить солнечную батарею в доступном месте. По мере использования устройства его лицевая сторона накапливает грязь, а в зимнее время её заносит снегом, и в результате выработка энергии снижается. Поэтому необходимо периодически проводить чистку батареи, удаляя налёт с её лицевой панели.

Изготовление устройства из подручных средств

На сегодняшний день умельцами были разработаны способы создания солнечных батарей из подручных материалов, но оправдана ли такая экономия?

Использование старых транзисторов

Для изготовления солнечной батареи можно использовать старые транзисторы. Для этого срезают их крышки, зафиксировав приборы в тисках за ободок. Затем выполняется измерение напряжения под воздействием света. Необходимо определить его на всех выводах прибора с целью обнаружения максимальных значений. Напряжение зависит от мощности транзистора, а также от габаритов кристалла.


Срезать крышку транзистора нужно аккуратно, иначе можно повредить тонкие провода, которые подведены к полупроводниковому кристаллу

После этого можно приступить к изготовлению солнечной батареи. Используя пять транзисторов и, соединив их последовательно, можно получить устройство достаточной для обеспечения работы калькулятора мощности. Каркас собирается из листового пластика. Необходимо просверлить в нём отверстия, нужные для вывода транзистора. Калькулятор на основе такой солнечной батареи работает стабильно, однако нужно, чтобы он находился не дальше 30 см от источника света. Для лучших результатов целесообразно использовать вторую цепочку транзисторов.

Применение диодов

Для сбора солнечной батареи понадобится много диодов. Кроме того, используется плата для подложки. В процессе изготовления применяется паяльник.

Сначала нужно открыть внутренний кристалл, чтобы на него попадали лучи солнца. Для этого верхушка диода срезается и снимается. Нижнюю часть, где находится кристалл, необходимо подогреть над газовой плитой около 20 секунд. Когда расплавится припой кристалла, он легко снимется пинцетом. Аналогичная манипуляция проводится с каждым диодом. Затем кристаллы припаиваются к плате.


Элементы солнечной батареи из диодов соединяются между собой с помощью тонких медных проводов

Для получения 2–4 В достаточно 5 блоков, состоящих из пяти кристаллов, спаянных последовательно. Блоки размещаются между собой параллельно.

Устройство из листов меди

Чтобы изготовить солнечную батарею из листов меди, потребуется:

  • сами медные листы;
  • два зажима «крокодил»;
  • микроамперметр высокой чувствительности;
  • электрическая плита (не менее 1000 Вт);
  • пластиковая бутылка с обрезанным верхом;
  • две ложки поваренной соли;
  • вода;
  • наждачная бумага;
  • ножницы по листовому металлу.

Порядок действий:

  1. Сначала отрежьте кусок меди, который по размерам соответствует тэну на плите. Поверхность листа очистите от жира и зачистите наждачной бумагой, затем поместите на плиту и нагревайте при максимальной температуре.
  2. Во время образования окиси можно увидеть разноцветные узоры. Необходимо дождаться чёрного цвета, а затем оставить медный лист нагреваться ещё около получаса. По истечении этого промежутка времени плита выключается. Лист остаётся на ней для медленного охлаждения.
  3. Когда чёрная окись отпадёт, необходимо промыть медь под проточной водой.
  4. Затем вырежьте кусок аналогичного размера из целого листа. Обе части разместите в пластиковой бутылке. Важно, чтобы они не соприкасались друг с другом.
  5. Медные пластины прикрепите к стенкам бутылки с помощью зажимов. Провод от чистого листа подключите к положительному выводу измерительного прибора, а от меди с оксидом - к отрицательному.
  6. Соль растворите в небольшом количестве воды. Солёную воду осторожно вливайте в бутылку, стараясь не намочить контакты. Раствора должно быть столько, чтобы он не покрывал пластины полностью. Солнечная батарея готова, можно проводить эксперименты.

При размещении медных пластин в ёмкости нужно аккуратно изогнуть их, чтобы они вместились, но не сломались

Есть ли выгода?

КПД устройства, изготовленного из транзисторов, очень низок. Причина этого состоит в большой площади самого прибора и небольшом размере солнечного элемента (полупроводника). Таким образом, солнечная батарея на основе транзисторов не получила распространения, подобные устройства подходят только для развлечений.

Диодам свойственно потреблять ток и самопроизвольно светиться. Поэтому при их использовании для изготовления солнечной батареи часть диодов будет генерировать электричество, а остальные приборы, наоборот, его потреблять. Из этого можно сделать вывод, что эффективность такого устройства низкая.

Чтобы зажечь лампочку от солнечной батареи на основе медных листов, потребуется использовать большое количество материала. К примеру, для работы плиты на 1000 Вт необходимо 1 600 000 м² меди. Для обустройства такого прибора на крыше дома потребуется, чтобы её площадь составляла 282 м². И все усилия пошли бы на обеспечение работы одной печи. На практике использовать такую солнечную батарею нет смысла.

Несмотря на относительную дороговизну, солнечные батареи довольно быстро окупаются. Попробуйте этот экологичный способ выработки энергии, собрав солнечную батарею своими руками.

Солнечная энергетика - это просто здорово, но вот в чем проблема: даже одна батарея стоит немалых денег, а для хорошего эффекта нужна не одна, и даже не две. Потому и приходит идея - собрать все самому. Если есть у вас небольшой навык пайки - это сделать просто. Вся сборка заключается в том, чтобы последовательно соединить элементы в дорожки, а дорожки закрепить на корпусе. Сразу скажем о цене. Набор для одной панели (36 штук) стоит в районе 70-80$. А полностью со всеми материалами солнечные батареи своими руками обойдутся вам примерно в 120-150$. Намного меньше, чем заводские. Но нужно сказать, что и по мощности они будут тоже меньше. В среднем каждый фотопреобразователь выдает 0,5 В, если последовательно соединить 36 штук, это будет порядка 18 В.

Немного теории: типы фотоэлементов для солнечных батарей

Самая большая проблема - приобрести фотоэлектрические преобразователи. Это те самые кремниевые пластины, которые преобразуют солнечный свет в электричество. Вот тут нужно немного разбираться в типах фотоэлементов. Их выпускают двух типов: поликристаллические и монокристаллические. Монокристаллические более дорогие, но имеют более высокий КПД - 20-25%, поликристаллические - дешевле, но и производительность у них меньше - 17-20%. Как их отличить внешне? Поликристаллические имеют ярко-синий цвет. Монокристаллические немного темнее и у них не квадратная, а многогранная форма - квадрат со срезанными краями.

О форме выпуска. Есть фотоэлементы для солнечных батарей с уже припаянными проводниками, а есть наборы, где проводники прилагаются и все нужно паять самостоятельно. Что покупать решает каждый сам, но нужно сказать, что без навыка хотя-бы одну пластину вы повредите, а скорее, не одну. А если и паять умеете не очень… то лучше немного дороже заплатить, но получить уже почти готовые к использованию детали.

Сделать фотоэлементы для солнечных батарей своими руками нереально. Для этого нужно уметь выращивать кристаллы кремния, а потом его еще обрабатывать. Потому нужно знать, где купить. Об этом дальше.

Где и как купить фотоэлементы

Теперь о качестве. На всех китайских площадках типа Ebay или Alibaba продается отбраковка. Те детали, которые не прошли тесты на заводе. Потому идеальной батареи вы не получите. Но цена у них не самая большая, так что можно смириться. Во всяком случае, на первых порах. Соберите пару тестовых солнечных батарей своими руками, набейте руку, а потом можно брать с завода.

Некоторые продают фотоэлементы запаянными в воск. Это предотвращает их порчу при перевозке, но избавиться от воска и не повредить пластины довольно сложно. Нужно все вместе их окунуть в горячую, но не кипящую воду. Подождать пока воск растает, потом аккуратно разъединять. Потом поочередно купать каждую пластину в горячем мыльном растворе, потом окуная в чистую горячую воду. Таких «омовений» моет понадобиться несколько, воду и мыльный раствор придется менять, и не один раз. После того как воск удалите, чистые пластины разложите на махровом полотенце для просушки. Очень хлопотное это дело. Так что лучше покупайте без воска. Так намного проще.

Теперь о покупках на китайских площадках. Конкретно о Ebay и Alibaba. Они проверены, тысячи людей ежедневно там что-то покупают. Система ничем не отличается. После регистрации, как обычно, в строке поиска набираете название элемента. Потом выбираете понравившееся по какой-то причине предложение. Обязательно выбирайте из тех вариантов, где есть бесплатная доставка (на английском free shipping). Если такой пометки нет, то доставку придется оплачивать отдельно. А она часто больше стоимости товара и уж точно больше той разницы, что вы выгадаете на цене.

Ориентироваться нужно не только на цену, но и на рейтинг продавца и на отзывы. Внимательно читайте и состав товара, его параметры и отзывы. Можно с продавцом общаться, только сообщения писать нужно на английском.

По поводу оплаты. Она на этих площадках переводится продавцу только после того, как вы отпишитесь в получении товара. А пока идет доставка, ваши деньги лежат на счете торговой площадки. Оплачивать можно с карты. Если боитесь светить данные карты, воспользуйтесь промежуточными сервисами. Они есть разные, но суть одна - ваша карта не засветится. Есть на этих площадках и возврат товара, но это долгая песня, так что лучше брать у проверенных продавцов (с хорошим рейтингом и отзывами).

Да. Посылка идет в зависимости от региона. И дело не столько в том, как долго она будет идти из Китая, как в том, как скоро ее доставит почта. В лучшем случае - недели три, но может и полтора месяца.

Как собрать

Сборка солнечной батареи своими руками состоит из трех этапов:

  1. Изготовление каркаса.
  2. Пайка солнечных элементов.
  3. Укладка в каркас и герметизация.

Каркас изготовить можно из алюминиевых уголков или из деревянных реек. Но форма каркаса, материалы, последовательность изготовления зависят от способа установки.

Способ первый: установка на окне

Батарею вешают на окне, на раму изнутри помещения или снаружи, но тоже на окне. Тогда нужно делать каркас из алюминиевого уголка, а к нему приклеивать стекло или поликарбонат. В этом случае между фотоэлементами остаются хоть небольшие зазоры, через которые немного света проникает в помещение. Размеры рамы выбираете исходя из размеров ваших фотоэлементов и того, как вы собираетесь их располагать. Также некоторую роль могут сыграть габариты окна. Учтите, что плоскость должна быть ровная - фотоэлектрические преобразователи очень хрупкие, и при малейшем перекосе будут трескаться.

Развернув готовую раму с приклеенным стеклом лицом вниз, на поверхность стекла нанести слой герметика. На герметик, снова-таки лицевой стороной вниз, разложить собранные из фотоэлементов линейки.

Из толстого упругого поролона (толщина не менее 4 см) и куска полиэтиленовой пленки (200 мк) сделать мат: поролон обтянуть пленкой и хорошо скрепить. Лучше полиэтилен спаять, но можно и скотчем воспользоваться, только все стыки должны находиться на одной стороне. Вторая должна быть ровной и гладкой. По размерам мат должен хорошо ложиться в раму (без загибов и усилий).

Уложили мат на фотоэлементы, утопленные в герметике. На него доску, которая по размерам чуть меньше рамы, а на доску солидный груз. Это нехитрое устройство поможет выгнать пузыри воздуха, которые оказались под фотоэлементами. Воздух снижает производительность, причем очень сильно. Потому чем меньше пузырьков будет, тем лучше. Всю конструкцию оставляете на 12 часов.

Теперь время снять груз и отлепить мат. Делаете это медленно и не спеша. Важно не повредить пайку и проводники. Потому тяните плавно, без рывков. После того, как мат сняли, панель нужно оставить на некоторое время - досохнуть. Когда герметик перестанет липнуть, можно навешивать панель и пользоваться.

Вместо длительной процедуры с герметиком можно взять специальную пленку для герметизации. Она называется EVA. Просто сверху на собранную и уложенную на стекло батарею расстилаете пленку и греете ее строительным феном до полной герметизации. Времени уходит в разы меньше.

Способ второй: установка на стене, крыше и т.д.

В этом случае все иначе. Задняя стенка должна быть плотной и не проводящей ток. Возможно - деревянной, фанерной и т.п. Потому имеет смысл и раму сделать из деревянных брусков. Только высота корпуса должна быть небольшой, чтобы тень от бортиков не мешала.

На фото корпус состоит из двух половинок, но это совсем необязательно. Просто легче собирать и укладывать короткие линейки, но соединений в этом случае будет больше. Да. Несколько нюансов: нужно в корпусе предусмотреть несколько отверстий. В нижней части нужны несколько штук для выхода конденсата, а также два отверстия для вывода проводников от батареи.

Затем корпус батареи покрасить белой краской - кремниевые пластины имеют довольно широкий диапазон рабочих температур, но он не безграничен: от -40 o Cдо +50 o C. А летом в закрытой коробке +50 o C набегает легко. Потому и нужен белый цвет, чтобы не перегревались фотопреобразователи. Перегрев, как и переохлаждение, ведет к снижению эффективности. Это, кстати, может стать объяснением непонятного явления: полдень, солнце жарит, а батарея стала давать меньше электричества. А она просто перегрелась. Для южных регионов, наверное, нужно уложить фольгу. Это будет эффективнее. Причем производительность, скорее всего, возрастет: будет улавливаться еще и отраженное фольгой излучение.

После того как краса высохла, можно укладывать собранные дорожки. Но в этот раз лицом вверх. Как их крепить? На каплю термостойкого герметика посредине каждой пластины. Почему не нанести по всей поверхности? Из-за температурного расширения пластина будет менять размеры. Если приклеить ее только посередине, с ней ничего не случиться. Если будет хотя-бы две точки - она рано или поздно лопнет. Потому аккуратно посередине наносите каплю, мягко прижимаете пластину. Не давите - раздавить очень легко.

В некоторых случаях пластины сначала крепились на основу - лист ДВП, выкрашенный в тот же белый цвет. А потом уже на основе закреплялись к корпусу шурупами.

После того, как все линейки уложены, последовательно их соединяете. Чтобы проводники не болтались, их можно зафиксировать несколькими каплями герметика. Вывести провода от элементов можно через днище или через бортик - как удобнее. Протяните их через отверстие, а потом залейте дырку все тем же герметиком. Теперь нужно дать всем соединениям высохнуть. Если накрыть крышкой раньше, на стекле и фотоэлементах образуется налет, который сильно снижает эффективность батареи. Потому ждем как минимум сутки (или столько, сколько указано на упаковке герметика).

Теперь дело за малым - накрыть все стеклом или прозрачным пластиком. Как крепить — дело ваше. Но на первых порах не герметизируйте. По крайней мере, до испытания. Может где-то обнаружится проблема.

И еще один нюанс. Если планируете в систему подключать аккумуляторы, понадобится поставить диод, который будет предотвращать разряд аккумулятора через батарею в ночное время или в плохую погоду. Лучше всего поставить диод «Шоттки». Его подсоединяю к батарее последовательно. Установить его лучше внутри конструкции - при высоких температурах у него уменьшается падение напряжения, т.е. в рабочем состоянии он будет меньше «садить» напряжение.

Как паять элементы для солнечной батареи

Немного об обращении с кремниевыми пластинами. Они очень-очень хрупкие, легко трескаются и ломаются. Потому обращаться нужно с ними с крайней осторожностью, хранить в жесткой таре подальше от детворы.

Работать нужно на ровной твердой поверхности. Если стол покрыт клеенкой, положите лист чего-то твердого. Пластина не должна прогибаться, а всей поверхностью жестко опираться на основу. Причем основание должно быть гладким. Как показывает опыт, идеальный вариант - кусок ламината. Он, жесткий, ровный, гладкий. Паяют на тыльной стороне, не на лицевой.

Для пайки использовать можно флюс или канифоль, любой из составов в маркере для пайки. Тут у каждого свои пристрастия. Но желательно, чтобы состав не оставлял следов на матрице.

Укладываете кремниевую пластину лицом вверх (лицо - синяя сторона). На ней есть две или три дорожки. Их промазываете флюсом или маркером, спиртовым (не водно-спиртовым) раствором канифоли. В комплекте с фотопреобразователями идет обычно тонкая контактная лента. Иногда она нарезана на куски, иногда идет в катушке. Если лента намотана на катушку, отрезать нужно кусок, равный двойной ширине солнечного элемента, плюс 1 см.

На обработанную флюсом полосу припаиваете отрезанный кусок. Лента получается намного длиннее пластинки, весь остаток остается с одной стороны. Старайтесь вести паяльник не отрывая. Насколько это возможно. Для более качественной пайки на кончике жала у вас должна быть капля припоя или олова. Тогда пайка будет качественной. Непропаянных мест быть не должно, хорошо все прогревайте. Но не давите! Особенно по краям. Это очень хрупкие изделия. Поочередно припаиваете ленты на все дорожки. Фотопреобразователи получаются «хвостатые».

Теперь, собственно, о том, как собрать солнечную батарею своими руками. Приступаем к сборке линейки. С обратной стороны пластинки тоже есть дорожки. Теперь «хвост» от верхней пластины припаиваем к нижней. Технология такая же: дорожку промазываем флюсом, потом пропаиваем. Так последовательно соединяем нужное количество фотоэлектрических преобразователей.

В некоторых вариантах на задней стороне не дорожки, а площадки. Тогда пайки меньше, но претензий по качеству может быть больше. В этом случае промазываем флюсом только площадки. И паяем тоже только на них. Вот, собственно, все. Собранные дорожки можно переносить на основание или корпус. Но есть еще множество хитростей.

Так, например, между фотоэлементами нужно выдерживать определенное расстояние (4-5 мм), что без фиксаторов не так и легко. Малейший перекос, и есть возможность порвать проводник, или сломать пластинку. Потому для задания определенного шага на кусок ламината приклеивают строительные крестики (используются при укладке плитки), или делают разметку.

Все проблемы, которые возникают при изготовлении солнечных батарей своими руками, связаны с пайкой. Потому перед герметизацией, а лучше еще и перед переносом линейки на корпус, проверить сборку амперметром. Если все нормально, можно продолжать работу.

Итоги

Теперь вы знаете, как сделать солнечную батарею в домашних условиях. Дело не самое сложное, но требует кропотливой работы.

Наверное, нет такого человека, который не хотел бы стать более независимым. Возможность полностью распоряжаться собственным временем, путешествовать, не зная границ и расстояний, не задумываться о жилищных и финансовых проблемах - вот что даёт ощущение настоящей свободы. Сегодня мы расскажем о том, как, используя солнечное излучение, снять с себя бремя энергетической зависимости. Как вы догадались, речь пойдёт о солнечных батареях. А если быть точнее, то о том, можно ли своими руками построить настоящую солнечную электростанцию.

История создания и перспективы использования

Идею превращения энергии Солнца в электричество человечество вынашивало давно. Первыми появились гелиотермальные установки, в которых перегретый сконцентрированными солнечными лучами пар вращал турбины генератора. Прямое преобразование стало возможным лишь в середине XIX века, после того, как француз Александр Эдмон Баккарель открыл фотоэлектрический эффект. Попытки создать на основании этого явления действующую солнечную ячейку увенчались успехом лишь полвека спустя, в лаборатории выдающегося русского учёного Александра Столетова. Полностью описать механизм фотоэлектрического эффекта удалось ещё позже - человечество обязано этим Альберту Энштейну. К слову, именно за эту работу он получил Нобелевскую премию.

Баккарель, Столетов и Энштейн - вот те учёные, которые заложили фундамент современной солнечной энергетики

О создании первого солнечного фотоэлемента на основе кристаллического кремния возвестили мир сотрудники компании Bell Laboratories в далёком апреле 1954 года. Эта дата, по сути, и является отправной точкой технологии, которая в скором времени сможет стать полноценной заменой углеводородному топливу.

Поскольку ток одной фотоэлектрической ячейки составляет миллиамперы, то для получения электроэнергии достаточной мощности их приходится соединять в модульные конструкции. Защищённые от внешнего воздействия массивы солнечных фотоэлементов и являются солнечной батареей (из-за плоской формы устройство нередко называют солнечной панелью).

Преобразование солнечного излучения в электричество имеет огромные перспективы, ведь на каждый квадратный метр земной поверхности приходится в среднем 4.2 кВт/час энергии в день, а это экономия практически одного барреля нефти в год. Изначально используемая лишь для космической отрасли технология уже в 80-х годах прошлого века стала настолько обыденной, что фотоэлементы стали использовать в бытовых целях - в качестве источника питания калькуляторов, фотоаппаратов, светильников и т. д. Параллельно создавались и «серьёзные» гелиоэлектрические установки. Закреплённые на крышах домов, они позволяли полностью отказаться от проводного электричества. Сегодня можно наблюдать рождение электростанций, представляющих собой многокилометровые поля из кремниевых панелей. Вырабатываемая ими мощность позволяет питать целые города, поэтому можно с уверенностью говорить о том, что будущее - за солнечной энергетикой.

Современные солнечные электростанции представляют собой многокилометровые поля фотоэлементов, способные снабжать электричеством десятки тысяч домов

Солнечная батарея: как это работает

После того как Энштейн описал фотоэлектрический эффект, миру открылась вся простота такого, казалось бы, сложного физического явления. В его основе лежит вещество, отдельные атомы которого находятся в неустойчивом состоянии. При «бомбардировке» фотонами света из их орбит выбиваются электроны - вот они-то и являются источниками тока.

Практически полвека фотоэффект не имел практического применения по одной простой причине - отсутствовала технология получения материалов с неустойчивой атомной структурой. Перспективы дальнейших исследований появились лишь с открытием полупроводников. Атомы этих материалов имеют либо избыток электронов (n-проводимость), или же испытывают в них нехватку (p-проводимость). При использовании двухслойной структуры со слоем n-типа (катод) и p-типа (анод), «обстрел» фотонами света выбивает электроны из атомов n-слоя. Покидая свои места, они устремляются на свободные орбиты атомов p-слоя и далее через подключённую нагрузку возвращаются на исходные позиции. Наверное, каждый из вас знает, что движение электронов в замкнутом контуре представляет собой электрический ток. Вот только заставить электроны перемещаться удаётся не благодаря магнитному полю, как в электрических генераторах, а за счёт потока частиц солнечного излучения.

Солнечная панель работает благодаря фотоэлектрическому эффекту, который был открыт ещё в начале XIX века

Поскольку мощность одного фотоэлектрического модуля недостаточна для питания электронных устройств, то для получения требуемого напряжения используется последовательное подключение множества ячеек. Что же касается силы тока, то её наращивают параллельным соединением определённого количества таких сборок.

Генерация электричества в полупроводниках напрямую зависит от количества солнечной энергии, поэтому фотоэлементы не только устанавливают под открытым небом, но и стараются сориентировать их поверхность перпендикулярно падающим лучам. А чтобы защитить ячейки от механических повреждений и атмосферного воздействия, их монтируют на жёстком основании и сверху защищают стеклом.

Классификация и особенности современных фотоэлементов

Первую солнечную ячейку изготовили на основе селена (Se), однако низкий КПД (менее 1%), быстрое старение и высокая химическая активность селеновых фотоэлементов вынуждали искать другие, более дешёвые и эффективные материалы. И они нашлись в лице кристаллического кремния (Si). Поскольку этот элемент периодической таблицы является диэлектриком, его проводимость обеспечили за счёт включений из различных редкоземельных металлов. В зависимости от технологии изготовления существует несколько типов кремниевых фотоэлементов:

  • монокристаллические;
  • поликристаллические;
  • из аморфного Si.

Первые изготавливаются методом срезания тончайших слоёв от слитков кремния самой высокой степени очистки. Внешне фотоэлементы монокристаллического типа выглядят как однотонные тёмно-синие стеклянные пластины с выраженной электродной сеткой. Их КПД достигает 19%, а срок службы составляет до 50 лет. И хоть производительность изготовленных на основе монокристаллов панелей постепенно падает, есть данные, что изготовленные более 40 лет назад батареи и сегодня сохраняют работоспособность, выдавая до 80% своей первоначальной мощности.

Монокристаллические солнечные ячейки имеют однородный тёмный цвет и срезанные углы - эти признаки не позволяют спутать их с другими фотоэлементами

В производстве поликристаллических фотоэлементов используют не такой чистый, но зато более дешёвый кремний. Упрощение технологии сказывается на внешнем виде пластин - они имеют не однородный оттенок, а более светлый узор, который образуют границы множества кристаллов. КПД таких солнечных ячеек немного ниже, чем у монокристаллических - не более 15%, а срок службы составляет до 25 лет. Надо сказать, что снижение основных эксплуатационных показателей абсолютно не сказалось на популярности поликристаллических фотоэлементов. Они выигрывают за счёт более низкой цены и не такой сильной зависимости от внешней загрязнённости, низкой облачности и ориентации на Солнце.

Поликристаллические фотоэлементы имеют более светлый синий оттенок и неоднородный рисунок - следствие того, что их структура состоит из множества кристаллов

Для солнечных батарей из аморфного Si используется не кристаллическая структура, а тончайший слой кремния, который напыляют на стекло или полимер. Хоть подобный метод производства и является самым дешёвым, такие панели имеют самый короткий срок жизни, причиной чему является выгорание и деградация аморфного слоя на солнце. Не радует этот тип фотоэлементов и производительностью - их КПД составляет не более 9% и во время эксплуатации существенно снижается. Использование солнечных батарей из аморфного кремния оправдано в пустынях - высокая солнечная активность нивелирует падение производительности, а бескрайние просторы позволяют размещать гелиоэлекростанции любой площади.

Возможность напылять кремниевую структуру на любую поверхность позволяет создавать гибкие солнечные панели

Дальнейшее развитие технологии производства фотоэлектрических элементов вызвано необходимостью в снижении цены и улучшении эксплуатационных характеристик. Максимальной производительностью и долговечностью сегодня обладают плёночные фотоэлементы:

  • на основе теллурида кадмия;
  • из тонких полимеров;
  • с использованием индия и селенида меди.

О возможности применения в самодельных устройствах тонкоплёночных фотоэлементов говорить пока ещё рано. Сегодня их выпуском занимается только несколько наиболее «продвинутых» в технологическом плане компаний, поэтому чаще всего гибкие фотоэлементы можно увидеть в составе готовых солнечных панелей.

Какие фотоэлементы лучше всего подходят для солнечной батареи и где их можно найти

Изготовленные кустарным способом солнечные панели всегда будут находиться на шаг позади своих заводских собратьев, и на то есть несколько причин. Во-первых, известные производители тщательно отбирают фотоэлементы, отсеивая ячейки с нестабильными или сниженными параметрами. Во-вторых, при изготовлении гелиоэлектрических батарей используется специальное стекло с повышенным светопропусканием и сниженной отражающей способностью - найти такое в продаже практически невозможно. И в-третьих, прежде чем приступать к серийному выпуску, все параметры промышленных образцов обкатывают с использованием математических моделей. В итоге минимизируется влияние нагрева ячеек на КПД батареи, улучшается система отвода тепла, находится оптимальное сечение соединяющих шин, исследуются пути снижения скорости деградации фотоэлементов и т. д. Решать подобные задачи, не имея оборудованной лаборатории и соответствующей квалификации, невозможно.

Низкая стоимость самодельных солнечных батарей позволяет построить установку, позволяющую полностью отказаться от услуг энергокомпаний

Тем не менее сделанные своими руками солнечные батареи показывают неплохие результаты производительности и не так уж и сильно отстают от промышленных аналогов. Что же касается цены, то здесь мы имеем выигрыш более чем в два раза, то есть при одинаковых затратах самоделки дадут в два раза больше электроэнергии.

Учитывая всё вышесказанное, вырисовывается картина того, какие фотоэлементы подходят под наши условия. Плёночные отпадают по причине отсутствия в продаже, а аморфные - из-за короткого срока службы и низкого КПД. Остаются ячейки из кристаллического кремния. Надо сказать, что в первом самодельном устройстве лучше использовать более дешёвые «поликристаллы». И только обкатав технологию и «набив руку», следует переходить на монокристаллические ячейки.

Для обкатки технологий подойдут дешёвые некондиционные фотоэлементы - как и качественные устройства, их можно купить на зарубежных торговых площадках

Что касается вопроса, где взять недорогие солнечные элементы, то их можно найти на зарубежных торговых площадках типа Taobao, Ebay, Aliexpress, Amazon и др. Там они продаются как в виде отдельных фотоэлементов различных размеров и производительности, так и готовыми наборами для сборки солнечных панелей любой мощности.

Продавцы нередко предлагают фотоэлементы так называемого класса «B», которые представляют собой повреждённые солнечные батареи моно- или поликристаллического типа. Небольшие сколы, трещины или отсутствие уголков практически не сказывается на производительности ячеек, зато позволяет приобрести их по гораздо меньшей стоимости. Именно по этой причине их выгоднее всего использовать в самодельных гелиоэнергетических устройствах.

Можно ли заменить фотоэлектрические пластины чем-то другим

Редко у какого домашнего мастера не найдётся заветной коробочки со старыми радиодеталями. А ведь диоды и транзисторы от старых приёмников и телевизоров являются всё теми же полупроводниками с p-n-переходами, которые при освещении солнечным светом вырабатывают ток. Воспользовавшись этими их свойствами и соединив несколько полупроводниковых приборов, можно сделать самую настоящую солнечную батарею.

Для изготовления маломощной солнечной батареи можно использовать старую элементную базу полупроводниковых приборов

Внимательный читатель сразу же спросит, в чём подвох. Зачем платить за фабричные моно- или поликристаллические ячейки, если можно использовать то, что лежит буквально под ногами. Как всегда, дьявол скрывается в деталях. Дело в том, что самые мощные германиевые транзисторы позволяют получить на ярком солнце напряжение не более 0.2 В при силе тока, измеряемой микроамперами. Для того чтобы достичь параметров, которые выдаёт плоский кремниевый фотоэлемент, понадобится несколько десятков, а то и сотен полупроводников. Сделанная из старых радиодеталей батарея сгодится разве что для зарядки кемпингового светодиодного фонаря или небольшого аккумулятора мобильного телефона. Для реализации более масштабных проектов, без покупных солнечных ячеек не обойтись.

На какую мощность солнечных батарей можно рассчитывать

Задумываясь о строительстве собственной солнечной электростанции, каждый мечтает о том, чтобы полностью отказаться от проводного электричества. Для того чтобы проанализировать реальность этой затеи, сделаем небольшие расчёты.

Узнать суточное потребление электроэнергии несложно. Для этого достаточно заглянуть в присланный энергосбывающей организацией счёт и разделить количество указанных там киловатт на число дней в месяце. К примеру, если вам предлагают оплатить 330 кВт×час, то это значит, что суточное потребление составляет 330/30=11 кВт×час.

График зависимости мощности солнечной батареи в зависимости от освещённости

В расчётах следует обязательно учитывать тот факт, что солнечная панель будет вырабатывать электричество только в светлое время суток, причём до 70% генерации осуществляется в период с 9 до 16 часов. Кроме того, эффективность работы устройства напрямую зависит от угла падения солнечных лучей и состояния атмосферы.

Небольшая облачность или дымка снизят эффективность токоотдачи гелиоустановки в 2–3 раза, тогда как затянутое сплошными облаками небо спровоцирует падение производительности в 15–20 раз. В идеальных условиях для генерации 11 кВт×час энергии было бы достаточно солнечной батареи мощностью 11/7 = 1.6 кВт. Учитывая влияние природных факторов, этот параметр следует увеличить примерно на 40–50%.

Кроме того, есть ещё один фактор, заставляющий увеличить площадь используемых фотоэлементов. Во-первых, не следует забывать о том, что ночью батарея работать не будет, а значит, понадобятся мощные аккумуляторы. Во-вторых, для питания бытовых приборов нужен ток напряжением 220 В, поэтому понадобится мощный преобразователь напряжения (инвертор). Специалисты утверждают, что потери на накопление и трансформацию электроэнергии забирают до 20–30% от её общего количества. Поэтому реальная мощность солнечной батареи должна быть увеличена на 60–80% от расчётной величины. Принимая значение неэффективности в 70%, получаем номинальную мощность нашей гелиопанели, равную 1.6 + (1.6×0.7) =2.7 кВт.

Использование сборок из высокотоковых литиевых аккумуляторов является одним из наиболее изящных, но отнюдь не самым дешёвым способом хранения солнечной электроэнергии

Для хранения электроэнергии понадобятся низковольтные аккумуляторы, рассчитанные на напряжение 12, 24 или 48 В. Их ёмкость должна быть рассчитана на суточное потребление энергии плюс потери на трансформацию и преобразование. В нашем случае понадобится массив батарей, рассчитанных на хранение 11 + (11×0.3) = 14.3 кВт×час энергии. Если использовать обычные 12-вольтовые автомобильные аккумуляторы, то понадобится сборка на 14300 Вт×ч / 12 В = 1200 А×ч, то есть шесть аккумуляторов, рассчитанных на 200 ампер-часов каждый.

Как видите, даже для того, чтобы обеспечить электричеством бытовые потребности средней семьи, понадобится серьёзная гелиоэлектрическая установка. Что касается использования самодельных солнечных батарей для отопления, то на данном этапе такая затея не выйдет даже на границы самоокупаемости, не говоря уж о том, чтобы можно было что-то сэкономить.

Расчёт размера батареи

Размер батареи зависит от требуемой мощности и габаритов источников тока. При выборе последних вы обязательно обратите внимание на предлагаемое разнообразие фотоэлементов. Для использования в самодельных устройствах удобнее всего выбирать солнечные ячейки среднего размера. Например, рассчитанные на выходное напряжение 0.5 В и силу тока до 3 А поликристаллические панели размером 3×6 дюймов.

При изготовлении солнечной батареи они будут последовательно соединяться в блоки по 30 шт, что позволит получить требуемое для зарядки автомобильной батареи напряжение 13–14 В (учитывая потери). Максимальная мощность одного такого блока составляет 15 В × 3 А = 45 Вт. Исходя из этого значения, будет нетрудно подсчитать, сколько элементов понадобится для постройки солнечной панели заданной мощности и определить её размеры. Например, для постройки 180-ваттного солнечного электрического коллектора понадобится 120 фотоэлементов общей площадью 2160 кв. дюймов (1.4 кв.м).

Постройка самодельной солнечной батареи

Прежде чем приступать к изготовлению солнечной панели, следует решить задачи по её размещению, рассчитать габариты и подготовить необходимые материалы и инструмент.

Правильный выбор места установки - это важно

Поскольку солнечная панель будет изготавливаться своими руками, соотношение её сторон может быть любым. Это очень удобно, поскольку самодельное устройство можно более удачно вписать в экстерьер кровли или дизайн загородного участка. По этой же причине выбирать место для монтажа батареи следует ещё до начала проектировочных мероприятий, не забывая учитывать несколько факторов:

  • открытость места для солнечных лучей в течение светового дня;
  • отсутствие затеняющих построек и высоких деревьев;
  • минимальное расстояние до помещения, в котором установлены аккумулирующие мощности и преобразователи.

Конечно, установленная на крыше батарея выглядит более органично, однако размещение устройства на земле имеет больше преимуществ. В этом случае исключается возможность повреждения кровельных материалов при установке поддерживающего каркаса, снижается трудоёмкость монтажа устройства и появляется возможность своевременного изменения «угла атаки солнечных лучей». И что самое главное - при нижнем размещении будет намного проще поддерживать чистоту поверхности солнечной панели. А это является залогом того, что установка будет работать в полную силу.

Монтаж солнечной панели на крыше вызвана скорее нехваткой места, чем необходимостью или удобством эксплуатации

Что понадобится в процессе работы

Приступая к изготовлению самодельной солнечной панели, следует запастись:

  • фотоэлементами;
  • многожильным медным проводом или специальными шинами для соединения солнечных ячеек;
  • припоем;
  • диодами Шоттки, рассчитанными на токоотдачу одного фотоэлемента;
  • качественным антибликовым стеклом или плексигласом;
  • рейками и фанерой для изготовления каркаса;
  • силиконовым герметиком;
  • метизами;
  • краской и защитным составом для обработки деревянных поверхностей.

В работе понадобится самый простой инструмент, который всегда есть под рукой у домовитого хозяина - паяльник, стеклорез, пила, отвёртка, малярная кисть и др.

Инструкция по изготовлению

Для изготовления первой солнечной батареи лучше всего использовать фотоэлементы с уже припаянными выводами - в этом случае уменьшается риск повреждения ячеек при сборке. Тем не менее, если вы имеете навыки обращения с паяльником, то сможете немного сэкономить, купив солнечные элементы с нераспаянными контактами. Для постройки панели, которую мы рассматривали в приведённых выше примерах, понадобится 120 пластин. Используя соотношение сторон примерно 1:1, потребуется укладка 15 рядов фотоэлементов по 8 штук в каждом. При этом мы сможем каждые два «столбика» соединить последовательно, а четыре таких блока подключить параллельно. Таким образом можно избежать путаницы в проводах и получить ровный, красивый монтаж.

Схема электрических соединений домашней солнечной электростанции

Корпус

Сборку солнечной панели всегда следует начинать с изготовления корпуса. Для этого нам понадобятся алюминиевые уголки или деревянные рейки высотой не более 25 мм - в этом случае они не будут бросать тень на крайние ряды фотоэлементов. Исходя из размеров наших кремниевых ячеек размером 3х6 дюймов (7.62х15.24 см), размер рамы должен составлять не менее 125х 125 см. Если вы решите использовать другое соотношение сторон (например, 1:2), то каркас можно дополнительно усилить поперечиной из рейки такого же сечения.

Обратную сторону корпуса следует зашить панелью из фанеры или OSB, а в нижнем торце рамы просверлить вентиляционные отверстия. Соединение внутренней полости панели с атмосферой понадобится для выравнивания влажности - в противном случае не избежать запотевания стёкол.

Для изготовления корпуса солнечной панели подойдут самые простые материалы - деревянные рейки и фанера

По внешнему размеру каркаса вырезают панель из плексигласа или высококачественного стекла высокой степени прозрачности. В крайнем случае можно использовать оконное стекло толщиной до 4 мм. Для его крепления подготавливают уголковые кронштейны, в которых выполняют сверления для крепления к раме. При использовании оргстекла можно проделать отверстия непосредственно в прозрачной панели - это упростит сборку.

Чтобы защитить деревянный корпус солнечной батареи от влаги и грибка, его пропитывают антибактериальным составом и окрашивают масляной краской.

Для удобства сборки электрической части, из ДВП или другого диэлектрического материала вырезают подложку по внутреннему размеру рамы. В дальнейшем на ней будет выполняться монтаж фотоэлементов.

Пайка пластин

Перед тем как начать пайку, следует «прикинуть» укладку фотоэлементов. В нашем случае понадобится 4 массива ячеек по 30 пластин в каждом, причём располагаться в корпусе они будут пятнадцатью рядами. С такой длинной цепочкой будет неудобно работать, к тому же возрастает риск повреждения хрупких стеклянных пластин. Рационально будет соединять по 5 деталей, а окончательную сборку выполнять после того, как фотоэлементы будут смонтированы на подложке.

Для удобства, фотоэлементы можно смонтировать на непроводящей подложкке из текстолита, оргстекла или ДВП

После соединения каждой цепочки, следует проверить её работоспособность. Для этого каждую сборку помещают под настольную лампу. Записывая значения силы тока и напряжения, можно не только контролировать работоспособность модулей, но и сравнивать их параметры.

Для пайки используем маломощный паяльник (максимум 40 Вт) и хороший, легкоплавкий припой. Его в небольшом количестве наносим на выводные части пластин, после чего, соблюдая полярность подключения, соединяем детали друг с другом.

При пайке фотоэлементов следует проявлять максимальную аккуратность, поскольку эти детали отличаются повышенной хрупкостью

Собрав отдельные цепочки, разворачиваем их тыльной частью к подложке и при помощи силиконового герметика приклеиваем к поверхности. Каждый 15-вольтовый блок фотоэлементов снабжаем диодом Шоттки. Этот прибор позволяет току протекать только в одном направлении, поэтому не позволит аккумуляторам разряжаться при низком напряжении солнечной панели.

Окончательное соединение отдельных цепочек фотоэлементов выполняют согласно представленной выше электрической схеме. В этих целях можно использовать специальную шину или многожильный медный провод.

Навесные элементы солнечной батареи следует закрепить термоклеем или саморезами

Сборка панели

Подложки с расположенными на них фотоэлементами укладывают в корпус и крепят саморезами. Если рама усиливалась поперечиной, то в ней выполняют несколько сверлений под монтажные провода. Кабель, который выводят наружу, надёжно фиксируют на раме и припаивают к выводам сборки. Чтобы не путаться с полярностью, лучше всего использовать двухцветные провода, подключая красный вывод к «плюсу» батареи, а синий - к её «минусу». По верхнему контуру рамы наносят сплошной слой силиконового герметика, поверх которого укладывают стекло. После окончательной фиксации сборку солнечной батареи считают законченной.

После того, как на герметик будет установлено защитное стекло, панель можно транспортировать к месту установки

Установка и подключение солнечной батареи к потребителям

В силу ряда причин самодельная солнечная панель является достаточно хрупким устройством, поэтому требует обустройства надёжного поддерживающего каркаса. Идеальным вариантом будет конструкция, которая позволит ориентировать источник бесплатной электроэнергии в обеих плоскостях, однако сложность такой системы чаще всего является весомым доводом в пользу простой наклонной системы. Она представляет собой подвижную раму, которую можно выставить под любым углом к светилу. Один из вариантов каркаса, сбитого из деревянного бруса, представлен ниже. Вы же можете использовать для его изготовления металлические уголки, трубы, шины и т. д. – всё, что есть под руками.

Чертёж каркаса солнечной батареи

Чтобы подключить солнечную батарею к аккумуляторам, понадобится контроллер заряда. Этот прибор будет следить за степенью заряда и разряда батарей, контролировать токоотдачу и выполнять переключение на сетевое питание при значительной просадке напряжения. Прибор необходимой мощности и требуемого функционала можно купить в тех же торговых точках, где продаются фотоэлементы. Что касается питания бытовых потребителей, то для этого потребуется трансформировать низковольтное напряжение в 220 В. С этим успешно справляется другое устройство - инвертор. Надо сказать, что отечественная промышленность выпускает надёжные приборы с хорошими ТТХ, поэтому преобразователь можно купить на месте - бонусом в этом случае будет «настоящая» гарантия.

Одной солнечной батареи для полноценного электроснабжения дома будет недостаточно - понадобятся еще и аккумуляторы, контроллер заряда и инвертор

В продаже можно найти инверторы одной и той же мощности, отличающиеся по цене в разы. Подобный разброс объясняется «чистотой» выходного напряжения, что является необходимым условием питания отдельных электрических устройств. Преобразователи с так называемой чистой синусоидой имеют усложнённую конструкцию, и как следствие, более высокую стоимость.

Видео: изготовление солнечной панели своими руками

Постройка домашней солнечной электростанции является нетривиальной задачей и требует как финансовых и временных затрат, так и минимальных знаний основ электротехники. Приступая к сборке солнечной панели, следует соблюдать максимальное внимание и аккуратность - только в этом случае можно рассчитывать на удачное решение вопроса. Напоследок хотелось бы напомнить о том, что загрязнение стекла является одним из факторов падения производительности. Не забывайте своевременно чистить поверхность солнечной панели, иначе она не сможет работать на полную мощность.

Жизнь в стиле «Органик», столь популярная идея в последние годы, предполагает гармоничные «отношения» человека с окружающей средой. Камнем преткновения любого экологического подхода является использование полезных ископаемых для получения энергии.

Выбросы токсичных веществ и углекислоты в атмосферу, выделяющихся при сгорании ископаемого топлива, постепенно убивают планету. Поэтому концепция «зеленой энергии», которая не вредит окружающей среде, является базовой основой многих новых энерготехнологий. Одним из таких направлений получения экологически чистой энергии является технология преобразования солнечного света в электрический ток. Да, именно так, речь пойдет о солнечных батареях и возможности установки систем автономного энергообеспечения в загородном доме.

В настоящий момент энергоустановки промышленного изготовления на базе солнечных батарей, применяемые для полного энерго- и теплообеспечения коттеджа, стоят не менее 15-20 тыс. долларов при гарантированном сроке эксплуатации около 25 лет. Стоимость любой гелиевой системы в перерасчете соотношения гарантированного срока эксплуатации к средним годичным затратам на коммунальное содержание загородного дома достаточно высокая: во-первых, сегодня средняя стоимость солнечной энергии соизмерима с покупкой энергоресурсов из центральных энергосетей, во-вторых, требуются одномоментные капитальные вложения для установки системы.

Обычно принято разделять гелиосистемы, предназначенные для тепло- и энергообеспечения. В первом случае используется технология солнечного коллектора, во втором — фотоэлектрический эффект для генерации электрического тока в солнечных батареях. Мы хотим рассказать о возможности самостоятельного изготовления солнечных батарей.

Технология ручной сборки солнечной энергетической системы достаточно проста и доступна. Практически каждый россиянин может собрать индивидуальные энергосистемы с высоким КПД при сравнительно низких затратах. Это выгодно, доступно и даже модно.

Выбор солнечных элементов для солнечной панели

Приступая к изготовлению солнечной системы, нужно обратить внимание, что при индивидуальной сборке нет необходимости в одномоментной установке полнофункциональной системы, её вполне можно наращивать постепенно. Если первый опыт оказался удачным, то имеет смысл расширять функциональность гелиосистемы.

По своей сути, солнечная батарея — это генератор, работающий на основе фотоэлектрического эффекта и преобразовывающий солнечную энергию в электрическую. Кванты света, попадающие на кремниевую пластину, выбивают электрон с последней атомной орбиты кремния. Этот эффект создает достаточное количество свободных электронов, образующих поток электрического тока.

Перед сборкой батареи нужно определиться в типе фотоэлектрического преобразователя, а именно: монокристаллическом, поликристаллическом и аморфном. Для самостоятельной сборки солнечной батареи выбирают доступные в продаже монокристаллические и поликристаллические солнечные модули.


Вверху: Монокристаллические модули без припаянных контактов. Внизу: Поликристаллические модули с припаянными контактами

Панели на основе поликристаллического кремния имеют достаточно низкий КПД (7-9%), но этот недостаток нивелируется тем, что поликристаллы практически не понижают мощность при облачности и пасмурной погоде, гарантийная долговечность таких элементов составляет около 10 лет. Панели на основе монокристаллического кремния имеют КПД около 13% при сроке эксплуатации около 25 лет, но эти элементы сильно снижают мощность при отсутствии прямого солнечного света. Показатели КПД кристаллов кремния от разных производителей могут существенно варьироваться. По практике работы солнечных электростанций в полевых условиях можно говорить о сроке службы монокристаллических модулей более 30 лет, а для поликристаллических — более 20 лет. Причем за весь период эксплуатации потеря мощности у кремниевых моно- и поликристаллических элементов составляет не более 10%, когда у тонкопленочных аморфных батарей за первые два года мощность снижается на 10-40%.



Солнечные элементы Evergreen Solar Cells с контактами в наборе 300 шт.

На аукционе Еbay можно приобрести набор Solar Cells для сборки солнечной батареи из 36 и 72 солнечных элементов. Такие наборы доступны в продаже и в России. Как правило, для самостоятельной сборки солнечных батарей используются солнечные модули В-типа, то есть модули, отбракованные на промышленном производстве. Эти модули не теряют своих эксплуатационных показателей и значительно дешевле. Некоторые поставщики предлагают солнечные модули на стеклотекстолитовой плате, что предполагает высокий уровень герметичности элементов, а, соответственно, надежности.

Название Характеристики Стоимость, $
Everbright Solar Cells (Еbay) без контактов поликристаллические, набор - 36 шт., 81х150 мм, 1,75 W (0,5 В), 3А, эффективность (%) - 13
в наборе с диодами и кислотой для паяния в карандаше
$46.00
$8.95доставка
Solar Cells (США новые) монокристаллические, 156х156 мм, 81х150 мм, 4W (0,5 В), 8А, эффективность (%) - 16.7-17.9 $7.50
монокристаллические, 153х138 мм, U хол. хода - 21,6V, I корот. зам. - 94 mA, Р - 1,53W, эффективность (%) - 13 $15.50
Solar Cells на стеклотекстолитовой плате поликристаллические, 116х116 мм, U хол. хода - 7,2V, I корот. зам. - 275 mA., Р - 1,5W, эффективность (%) - 10 $14.50
$87.12
$9.25 доставка
Solar Cells (Еbay) без контактов поликристаллические, набор - 72 шт., 81х150 мм 1.8W $56.11
$9.25 доставка
Solar Cells (Еbay) с контактами монокристаллические, набор - 40 шт., 152х152 мм $87.25
$14.99 доставка

Разработка проекта гелиевой энергосистемы

Проектирование будущей гелиосистемы во многом зависит от способа её установки и монтажа. Солнечные батареи должны быть установлены под наклоном, чтобы обеспечить попадание прямых солнечных лучей под прямым углом. Производительность солнечной панели во многом зависит от интенсивности световой энергии, а также от угла падения солнечных лучей. Размещение солнечной батареи относительно солнца и угол наклона зависит от географического расположения гелиевой системы и времени года.


Сверху вниз: Монокристаллические солнечные панели (по 80 ватт) на даче установлены практически вертикально (зима). Монокристаллические солнечные панели на даче имеют меньший угол (весна)ю Механическая система управления углом наклона солнечной батареи.

Промышленные гелиосистемы часто снабжены датчиками, которые обеспечивают ротационное движение солнечной панели по направлению движения солнечных лучей, а также зеркалами-концентраторами солнечного света. В индивидуальных системах такие элементы значительно усложняют и удорожают систему, поэтому не применяются. Может быть применена простейшая механическая система управлением углом наклона. В зимнее время солнечные панели должны быть установлены практически вертикально, это также защищает панель от налегания снега и обледенения конструкции.



Схема расчета угла наклона солнечной панели в зависимости от времени года

Солнечные батареи устанавливаются с солнечной стороны здания, чтобы обеспечить максимально доступный объем солнечной энергии в светлое время суток. В зависимости от географического расположения и уровня солнцестояния вычисляется угол наклона батареи, который наиболее подходит для вашего местоположения.

При усложнении конструкции можно создать систему управления углом наклона солнечной батареи в зависимости от времени года и углом поворота панели в зависимости от времени суток. Энергоэффективность такой системы будет выше.

При проектировании солнечной системы, которая будет устанавливаться на крышу дома, нужно обязательно выяснить, сможет ли кровельная конструкция выдержать требуемую массу. Самостоятельная разработка проекта предполагает расчет кровельной нагрузки с учетом веса снежного покрова в зимнее время.



Выбор оптимального статического угла наклона для кровельной солнечной системы монокристаллического типа

Для изготовления солнечных панелей можно выбирать различные материалы по удельному весу и другим характеристикам. При выборе материалов конструкции необходимо учитывать максимально допустимую температуру нагрева солнечного элемента, так как температура солнечного модуля, работающего на полную мощность, не должна превышать 250С. При превышении пиковой температуры солнечный модуль резко теряет свою способность преобразовывать солнечный свет в электрический ток. Готовые гелиосистемы для индивидуального использования, как правило, не предполагают охлаждение солнечных элементов. Самостоятельное изготовление может подразумевать охлаждение гелиосистемы или управление углом наклона солнечной панели для обеспечения функциональной температуры модуля, а также выбор соответствующего прозрачного материала, поглощающего ИК-излучение.

Грамотная конструкция солнечной системы позволяет обеспечить требуемую мощность солнечной батареи, которая будет приближаться к номинальной. При расчете конструкции нужно учитывать, что элементы одного типа дают одинаковое напряжение, не зависящее от размера элементов. Причем сила тока у крупноразмерных элементов будет больше, но и батарея будет значительно тяжелее. Для изготовления солнечной системы всегда берутся солнечные модули одного размера, так как максимальный ток будет ограничен максимальным током малого элемента.

Расчеты показывают, что в среднем в ясный солнечный день можно получить с 1 м солнечной панели не более 120 Вт мощности. Такая мощность не обеспечит работу даже компьютера. Система в 10 м дает более 1 кВт энергии и может обеспечивать электроэнергией работу основных бытовых приборов: светильников, телевизора, компьютера. Для семьи из 3-4 человек необходимо около 200-300 кВт в месяц, поэтому солнечная система, установленная с южной стороны, размером 20 м может вполне обеспечить семейные энергопотребности.

Если рассматривать среднестатистические данные по электроснабжению индивидуального жилого дома, то: ежедневное энергопотребление составляет 3 кВт ч, солнечная радиация с весны по осень — 4 кВт ч/м в день, пиковая мощность потребления — 3кВт (при включении стиральной машины, холодильника, утюга и электрочайника). С целью оптимизации энергопотребления для освещения внутри дома важно использовать лампы переменного тока с низким энергопотреблением — светодиодные и люминесцентные.

Изготовление каркаса солнечной батареи

В качестве каркаса солнечной батареи используется алюминиевый уголок. На аукционе Еbay можно приобрести готовые рамы для солнечных батарей. Прозрачное покрытие выбирается по желанию, исходя из характеристик, которые необходимы для данной конструкции.



Комплект рамы со стеклом для солнечной батареи, стоимость от 33 долларов

При выборе прозрачного защитного материала можно также ориентироваться на следующие характеристики материала:

Материал Показатель преломления Свето-пропуска-ние, % Удельный вес г/см 3 Размер листа, мм Толщина, мм Стоимость, руб./м 2
Воздух 1,0002926
Стекло 1,43-2,17 92-99 3,168
Оргстекло 1,51 92-93 1,19 3040х2040 3 960.00
Поликарбонат 1,59 до 92 0,198 3050 х2050 2 600.00
Плексиглас 1,491 92 1,19 2050х1500 11 640.00
Минеральное стекло 1,52-1,9 98 1,40

Если рассматривать показатель преломления света в качестве критерия выбора материала. Самый минимальный коэффициент преломления имеет плексиглас, более дешевым вариантом прозрачного материала является отечественное оргстекло, менее подходящим — поликарбонат. В продаже имеется поликарбонат с антиконденсатным покрытием, также этот материал обеспечивает высокий уровень термозащиты. При выборе прозрачных материалов по удельному весу и способности поглощать ИК-спектр лучшим будет поликарбонат. К лучшим прозрачным материалам для солнечных батарей относятся материалы с высоким светопропусканием.

При изготовлении солнечной батареи важно выбирать прозрачные материалы, которые не пропускают ИК-спектр и, таким образом, снижают нагревание кремниевых элементов, теряющих свою мощность при температуре свыше 250С. В промышленности используются специальные стекла, имеющие оксидно-металлическое покрытие. Идеальным стеклом для солнечных панелей считается тот материал, которые пропускает весь спектр кроме ИК-диапазона.



Схема поглощения УФ и ИК излучения различными стеклами.
а) обычное стекло, б) стекло с ИК-поглощением, в) дуплекс с термопоглощающим и обычным стеклом.

Максимальное поглощение ИК-спектра обеспечит защитное силикатное стекло с оксидом железа (Fe 2 O 3), но оно имеет зеленоватый оттенок. ИК-спектр хорошо поглощает любое минеральное стекло за исключением кварцевого, оргстекло и плексиглас относятся к классу органических стекол. Минеральное стекло более устойчиво к повреждениям поверхности, но является очень дорогим и недоступным. Для солнечных батарей также применяется специальное антибликовое сверхпрозрачное стекло, пропускающее до 98% спектра. Также это стекло предполагает поглощение большей части ИК-спектра.

Оптимальный выбор оптических и спектральных характеристик стекла значительно повышает эффективность фотопреобразования солнечной панели.



Солнечная панель в корпусе из оргстекла

Во многих мастер-классах по изготовлению солнечных батарей рекомендуется использовать оргстекло для передней и задней панели. Это позволяет проводить инспекцию контактов. Однако конструкцию из оргстекла сложно назвать полностью герметичной, способной обеспечить бесперебойную эксплуатацию панели в течение 20 лет работы.

Монтаж корпуса солнечной батареи

В мастер-классе показывается изготовление солнечной панели из 36 поликристаллических солнечных элементов размером 81x150 мм. Исходя из этих размеров, можно вычислить размеры будущей солнечной батареи. При расчете размеров важно между элементами делать небольшое расстояние, которое будет учитывать изменение размеров основы под атмосферным воздействием, то есть между элементами должно быть 3-5 мм. Результирующий размер заготовки должен быть 835х690 мм при ширине уголка 35 мм.

Самодельная солнечная батарея, сделанная с использованием алюминиевого профиля, наиболее похожа на солнечную панель фабричного изготовления. При этом обеспечивается высокая степень герметичности и прочности конструкции.
Для изготовления берется алюминиевый уголок, и выполняются заготовки рамки 835х690 мм. Чтобы можно было провести крепление метизов, в раме следует сделать отверстия.
На внутреннюю часть уголка дважды наносится силиконовый герметик.
Обязательно проследите, чтобы не было незаполненных мест. От качества нанесения герметика зависит герметичность и долговечность батареи.
Далее в раму кладется прозрачный лист из выбранного материала: поликарбоната, оргстекла, плексигласа, антибликового стекла. Важно силикону дать высохнуть на открытом воздухе, иначе испарения создадут пленку на элементах.
Стекло нужно тщательно прижать и зафиксировать.
Для надежного крепления защитного стекла понадобятся метизы. Нужно закрепить 4 угла рамки и по периметру разместить два метиза с длинной стороны рамки и по одному метизу с короткой стороны.
Метизы фиксируются при помощи шурупов.
Шурупы плотно затягиваются при помощи шуруповерта.
Каркас солнечной батареи готов. Перед креплением солнечных элементов, необходимо очистить стекло от пыли.

Подбор и пайка солнечных элементов

В настоящий момент на аукционе Еbay представлен огромный ассортимент изделий для самостоятельного изготовления солнечных батарей.



Набор Solar Cells включает комплект из 36 поликристаллических кремниевых элементов, проводники для элементов и шины, диоды Шотке и карандаш с кислотой для паяния

Так как солнечная батарея, сделанная своими руками, практически в 4 раза дешевле готовой, самостоятельное изготовление — это значительная экономия средств. На Еbay можно приобрести солнечные элементы с дефектами, но они не теряют своей функциональности, таким образом, стоимость солнечной батареи может существенно сократиться, если вы можете дополнительно пожертвовать внешним видом батареи.



Поврежденные фотоэлементы не теряют своей функциональности

При первом опыте лучше приобретать наборы для изготовления солнечных панелей, в продаже имеются солнечные элементы с припаянными проводниками. Пайка контактов — это достаточно сложный процесс, сложность усугубляется хрупкостью солнечных элементов.

Если вы приобрели кремниевые элементы без проводников, то сначала необходимо провести пайку контактов.

Так выглядит поликристаллический кремниевый элемент без проводников.
Проводники нарезаются с помощью картонной заготовки.
Необходимо аккуратно положить проводник на фотоэлемент.
На место припаивания нанести кислоту для паяния и припой. Проводник для удобства фиксируется с одной стороны тяжелым предметом.
В таком положении необходимо аккуратно припаять проводник к фотоэлементу. Во время пайки нельзя нажимать на кристалл, потому что он очень хрупкий.

Пайка элементов — это достаточно кропотливая работа. Если не удастся получить нормального соединения, то необходимо повторить работу. По нормативам серебряное напыление на проводнике должно выдерживать 3 цикла пайки при допустимых тепловых режимах, на практике сталкиваешься с тем, что напыление разрушается. Разрушение серебряного напыления происходит из-за использования паяльников с нерегулируемой мощностью (65Вт), этого можно избежать, если понизить мощность следующим образом — нужно последовательно с паяльником включить патрон с лампочкой в 100 Вт. Номинальная мощность нерегулируемого паяльника слишком высока для пайки кремниевых контактов.

Даже если продавцы проводников уверяют, что припой на соединителе имеется, его лучше нанести дополнительно. Во время пайки старайтесь аккуратно обращаться с элементами, при минимальном усилии они лопаются; не стоит складывать элементы пачкой, от веса нижние элементы могут треснуть.

Сборка и пайка солнечной батареи

При первой самостоятельной сборке солнечной батареи лучше воспользоваться разметочной подложкой, которая поможет расположить элементы ровно на некотором расстоянии друг от друга (5 мм).



Разметочная подложка для элементов солнечной батареи

Основа выполняется из листа фанеры с маркированием уголков. После пайки на каждый элемент с обратной стороны крепится кусок монтажной ленты, достаточно прижать заднюю панель к скотчу, и все элементы переносятся.



Монтажная лента, использованная для крепления, с обратной стороны солнечного элемента

При таком типе крепления сами элементы дополнительно не герметизируются, они могут свободно расширяться под действием температуры, это не приведет к повреждению солнечной батареи и разрыву контактов и элементов. Герметизации поддаются только соединительные части конструкции. Такой вид крепления больше подходит для опытных образцов, но вряд ли может гарантировать долгосрочную эксплуатацию в полевых условиях.

Последовательный план сборки батареи выглядит так:

Выкладываем элементы на стеклянную поверхность. Между элементами должно быть расстояние, что предполагает свободное изменение размеров без ущерба конструкции. Элементы нужно прижать грузами.
Пайку производим по приведенной ниже электросхеме. «Плюсовые» токоведущие дорожки размещены на лицевой стороне элементов, «минусовые» — на обратной стороне.
Перед пайкой нужно нанести флюс и припой, после аккуратно припаять серебряные контакты.
По такому принципу соединяются все солнечные элементы.
Контакты крайних элементов выводятся на шину, соответственно, на «плюс» и «минус». Для шины используется более широкий серебряный проводник, который имеется в наборе Solar Cells.
Рекомендуем также вывести «среднюю» точку, с ее помощью ставятся два дополнительных шунтирующих диода.
Клемма устанавливается также с внешней стороны рамы.
Так выглядит схема подключения элементов без выведенной средней точки.
Так выглядит клеммная планка с выведенной «средней» точкой. «Средняя» точка позволяет на каждую половину батареи поставить шунтирующий диод, который не даст батарее разряжаться при снижении освещения или затемнении одной половины.
На фото показан шунтирующий диод на «плюсовом» выходе, он противостоит разрядке аккумуляторов через батарею в ночное время и разрядке других батарей во время частичного затемнения.
Чаще в качестве шунтирующих диодов используют диоды Шотке. Они дают меньшую потерю на общей мощности электрической цепи.
В качестве токовыводящих проводов может быть использован акустический кабель в силиконовой изоляции. Для изоляции можно применить трубки из-под капельницы.
Все провода должны быть прочно зафиксированы силиконом.
Элементы могут быть соединены последовательно (см. фото), а не посредством общей шины, тогда 2-й и 4-й ряд необходимо повернуть на 1800 относительно 1-го ряда.

Основные проблемы сборки солнечной панели связаны с качеством пайки контактов, поэтому специалисты предлагают перед герметизацией панели ее протестировать.



Тестирование панели перед герметизацией, напряжение сети 14 вольт, пиковая мощность 65 Вт

Тестирование можно делать после пайки каждой группы элементов. Если вы обратите внимание на фотографии в мастер-классе, то часть стола под солнечными элементами вырезана. Это сделано намеренно, чтобы определить работоспособность электрической сети после пайки контактов.

Герметизация солнечной панели

Герметизация солнечных панелей при самостоятельном изготовлении — это самый спорный вопрос среди специалистов. С одной стороны, герметизация панелей необходима для повышения долговечности, она всегда применяется при промышленном изготовлении. Для герметизации зарубежные специалисты рекомендуют использовать эпоксидный компаунд «Sylgard 184», который дает прозрачную полимеризованную высокоэластичную поверхность. Стоимость «Sylgard 184» на Еbay составляет около 40 долларов.



Герметик с высокой степенью эластичности «Sylgard 184»

С другой стороны, если вы не хотите нести дополнительные затраты, вполне можно использовать силиконовый герметик. Однако в этом случае не стоит полностью заливать элементы, чтобы избежать их возможного повреждения в процессе эксплуатации. В таком случае элементы к задней панели можно прикрепить при помощи силикона и герметизировать только края конструкции. Насколько эффективна такая герметизация, сказать сложно, но использовать не- рекомендованные гидроизоляционные мастики не советуем, очень высока вероятность разрыва контактов и элементов.

Перед началом герметизации необходимо подготовить смесь «Sylgard 184».
Сначала заливаются места стыков элементов. Смесь должна схватиться, чтобы закрепить элементы на стекле.
После фиксации элементов делается сплошной полимеризирующий слой эластичного герметика, распределить его можно с помощью кисточки.
Так выглядит поверхность после нанесения герметика. Герметизирующий слой должен просохнуть. После полного высыхания можно закрыть солнечную батарею задней панелью.
Так выглядит лицевая сторона самодельной солнечной панели после герметизации.

Схема электроснабжения дома

Системы электроснабжения домов с использованием солнечных батарей принято называть фотоэлектрическими системами, то есть системами, обеспечивающими генерацию энергии с использованием фотоэлектрического эффекта. Для индивидуальных жилых домов рассматриваются три фотоэлектрические системы: автономная система энергообеспечения, гибридная батарейно-сетевая фотоэлектрическая система, безаккумуляторная фотоэлектрическая система, подключенная к центральной системе энергоснабжения.

Каждая из систем имеет свое предназначение и преимущества, но наиболее часто в жилых домах применяют фотоэлектрические системы с резервными аккумуляторными батареями и подключением к централизованной энергосети. Питание электросети осуществляется при помощи солнечных батарей, в темное время суток от аккумуляторов, а при их разрядке — от центральной энергосети. В труднодоступных районах, где нет центральной сети, в качестве резервного источника энергоснабжения используются генераторы на жидком топливе.

Более экономной альтернативой гибридной батарейно-сетевой системе электроснабжения будет безаккумуляторная солнечная система, подсоединенная к центральной сети энергоснабжения. Электроснабжение осуществляется от солнечных батарей, а в темное время суток сеть питается от центральной сети. Такая сеть более применима для учреждений, потому что в жилых домах большая часть энергии потребляется в вечернее время.



Схемы трех типов фотоэлектрических систем

Рассмотрим типичную установку батарейно-сетевой фотоэлектрической системы. В качестве генератора электроэнергии выступают солнечные панели, которые подсоединены через соединительную коробку. Далее в сети устанавливается контроллер солнечного заряда, чтобы избежать короткого замыкания при пиковой нагрузке. Электроэнергия накапливается в резервных батареях-аккумуляторах, а также подается через инвертор на потребители: освещение, бытовую технику, электроплиту и, возможно, используется для нагревания воды. Для установки системы отопления эффективнее применять гелиоколлекторы, которые относятся к альтернативной гелиотехнологии.



Гибридная батарейно-сетевая фотоэлектрическая система с переменным током

Существует два типа электросетей, которые используются в фотоэлектрических системах: на базе постоянного и переменного тока. Использование сети переменного тока позволяет размещать электропотребители на расстоянии, превышающем 10-15 м, а также обеспечивать условно-неограниченную нагрузку сети.

Для частного жилого дома обычно используют следующие комплектующие фотоэлектрической системы:

  • суммарная мощность солнечных панелей должна составлять 1000 Вт, они обеспечат выработку около 5 кВт ч;
  • аккумуляторы с общей емкостью в 800 А/ч при напряжении 12 В;
  • инвертор должен иметь номинальную мощность 3кВт с пиковой нагрузкой до 6 кВт, входное напряжение 24-48 В;
  • контроллер солнечного разряда 40-50 А при напряжении в 24 В;
  • источник бесперебойного питания для обеспечения кратковременного заряда с током до 150 А.

Таким образом, для фотоэлектрической системы электроснабжения понадобится 15 панелей на 36 элементов, пример сборки которых приведен в мастер-классе. Каждая панель дает суммарную мощность в 65 Вт. Более мощными будут солнечные батареи на монокристаллах. Например, солнечная панель из 40 монокристаллов имеет пиковую мощность 160 Вт, однако такие панели чувствительны к пасмурной погоде и облачности. В этом случае солнечные панели на базе поликристаллических модулей оптимальны для использования в северной части России.