Влияние органических удобрений на почву. Влияние минеральных удобрений на растения. Минеральные удобрения: польза и вред

Если вы ознакомились с теми статьями, которые я выложил в предыдущих постах, вам теперь понятно, как работает симбиоз червей, растений и микрофлоры почвы.

Итак, подведем итоги.
Растения своими плодами и своим перегноем (листья,стебли, корни и прочее) привлекает микрофлору почвы себе к корням. Само растение не может напрямую брать все необходимые вещества из почвы. Они приглашают бактерии и грибки, которые с помощью своих ферментов переваривают всю органику, делая так называемый бульон, который они "кушают" сами и который "кушают" растения. Затем часть бактерий, которые сильно размножаются в процессе питания, поедаются земляными червями. Переваривая бактерий и остатки бульона, черви "производят" собственно гумус. А гумус - это хранилище целого комплекса веществ, которые делают почву плодородной. Гумус как бы аккумулирует эти вещества, не давая их вымыть из почвы водой и прочими природными факторами и привести к деградации почвы и ее эрозии.

Таким образом,становится понятно, что если каким-то образом повлиять на процесс создания гумуса, на процесс питания растений, на этот уникальный симбиоз микрофлоры,червей и растений, можно нарушить процесс выработки гумуса и процесс нормального питания растений.

Именно этим и занимается современное традиционное сельское хозяйство. Оно вносит в землю тонны химикатов, нарушая гармоничный баланс микрофлоры.

Теперь понятно, что плодородность почвы зависит от здоровья микрофлоры почвы.
Но гербициды и пестициды убивают эту микрофлору. Убивают полностью. Доказательством тому, наш знакомый фермер - он говорит, что там, где он не кладет минеральных удобрений, там у него вообще картофель не растет - кустики вырастают в высоту до 10 см и все, клубни вообще не хотят завязываться. И он считает, что выход один - класть больше минеральных удобрений. И с каждым годом все больше и больше....

Растения на минеральных удобрениях - это наркоманы. Эти растения "сидят на допинге", на наркотиках. Все бы хорошо, но только растения не могут напрямую переваривать эти удобрения, им все-равно необходима микрофлора. Но эта микрофлора с каждым годом все сильнее и сильнее уничтожается химикатами и самими же минеральными удобрениями. Вот цитата с сайта об огородничестве: " минеральные удобрения изменяют качественный состав микроорганизмов почвы, разрушают молекулы гуминовых кислот, нарушается или исчезает вовсе плодородие, поскольку нарушается структура почвы, часто, казавшиеся похожими на безжизненную пыль, почвы просто выводятся из использования"( http://www.7dach.ru/VeraTyukaeva/unikalnye-guminovye-kisloty-21195.html )

А вот вам еще статья про влияние минеральных удобрений на почву и человека:(по материалам с сайта http://sadisibiri.ru/mineralnie-udobrebiya-vred-polza.html)

Минеральные удобрения: польза и вред

Да, урожай от них растёт,

Но губится природа.

Нитратов кушает народ

Всё больше год от года.

Мировое производство минеральных удобрений стремительно растёт. Каждое десятилетие оно увеличивается примерно в 2 раза. Урожайность культур от их применения, конечно, растёт, но у этой проблемы много негативных сторон, и это беспокоит очень многих людей. Не зря в некоторых странах Запада правительство поддерживает овощеводов, выращивающих продукцию без применения минеральных удобрений – экологически чистую.

МИГРАЦИЯ АЗОТА И ФОСФОРА ИЗ ПОЧВЫ

Доказано, что из внесённого в почву азота растения усваивают около 40%, остальной азот вымывается из почвы дождём и улетучивается в виде газа. В меньшей степени, но вымывается из почвы и фосфор. Накопление азота и фосфора в грунтовых водах ведёт к загрязнению водоёмов, они быстро стареют и превращаются в болота, т.к. повышенное содержание удобрений в воде влечет за собой быстрый рост растительности. Отмирающий планктон и водоросли осаждаются на дно водоёмов, это ведёт к выделению метана, сероводорода и к сокращению запасов растворимого в воде кислорода, что является причиной замора рыбы. Сокращается и видовой состав ценных рыб. Рыба не стала вырастать до нормальных размеров, она раньше начала стареть, раньше погибать. Планктон в водоёмах накапливает нитраты, рыбы им питаются, и употребление в пищу таких рыб может привести к заболеваниям желудка. А накопление азота в атмосфере ведет к выпадению кислых дождей, подкисляющих почву и воду, разрушающих строительные материалы, окисляющих металлы. От всего этого страдают леса и обитающие в них животные и птицы, а в водоемах гибнут рыбы, моллюски. Есть сообщение, что на некоторых плантациях, где добывают мидии (это съедобные моллюски, они раньше очень ценились), они стали несъедобными, больше того, случались случаи отравления ими.

ВЛИЯНИЕ МИНЕРАЛЬНЫХ УДОБРЕНИЙ НА СВОЙСТВА ПОЧВЫ

Наблюдения показывают, что содержание гумуса в почвах постоянно уменьшается. Плодородные почвы, черноземы в начале века содержали до 8% гумуса. Сейчас таких почв почти не осталось. Подзолистые и дерновo-подзолистые почвы содержат 0,5-3% гумуса, серые лесные – 2-6%, луговые чернозёмы – больше 6%. Гумус служит хранилищем основных элементов питания растений, это коллоидное вещество, частички которого удерживают на своей поверхности элементы питания в доступной для растений форме. Образуется гумус при разложении микроорганизмами остатков растительного происхождения. Гумус не заменить никакими минеральными удобрениями, напротив, они ведут к активной минерализации гумуса, структура почвы ухудшается, из коллоидных комочков, удерживающих воду, воздух, питательные элементы, почва превращается в пылеобразное вещество. Из естественной почва превращается в искусственную. Минеральные удобрения провоцируют вымывание из почвы кальция, магния, цинка, меди, марганца и т.д., это влияет на процессы фотосинтеза, снижает устойчивость растений к заболеваниям. Применение минеральных удобрений ведёт к уплотнению почвы, снижению её пористости, к уменьшению доли зернистых агрегатов. Кроме того, подкисление почвы, неизбежно происходящее при внесении минеральных удобрений, требует всё большего внесения извести. В 1986 году в нашей стране было внесено в почву 45,5 млн. т извести, однако это не компенсировало потери кальция и магния.

ЗАГРЯЗНЕНИЕ ПОЧВ ТЯЖЁЛЫМИ МЕТАЛЛАМИ И ТОКСИЧЕСКИМИ ЭЛЕМЕНТАМИ

Сырьё, используемое для производства минеральных удобрений, содержит стронций, уран, цинк, свинец, кадмий и пр., извлечь которые технологически сложно. Как примеси эти элементы входят в суперфосфаты, в калийные удобрения. Наиболее опасны тяжёлые металлы: ртуть, свинец, кадмий. Последний разрушает эритроциты в крови, нарушает работу почек, кишечника, размягчает ткани. Здоровый человек весом 70 кг без вреда здоровью может получать с пищей за неделю до 3,5 мг свинца, 0,6 мг кадмия, 0,35 мг ртути. Однако на сильно удобренных почвах растения могут накопить и большие концентрации этих металлов. Например, в молоке коров может быть до 17-30 мг кадмия в 1 литре. Присутствие в фосфорных удобрениях урана, радия, тория увеличивает уровень внутреннего облучения человека и животных при попадании растительной пищи в их организм. В состав суперфосфата входит также фтор в количестве 1-5%, и его концентрация может достигать 77,5 мг/кг, вызывая различные болезни.

МИНЕРАЛЬНЫЕ УДОБРЕНИЯ И ЖИВОЙ МИР ПОЧВЫ

Применение минеральных удобрений вызывает изменение видового состава микроорганизмов почвы. Сильно увеличивается численность бактерий, способных усваивать минеральные формы азота, но уменьшается число симбионтных микрогрибов в ризосфере растений (ризосфера - это 2-3-милиметровая область почвы, прилегающая к корневой системе). Уменьшается также число азотфиксирующих бактерий в почве - в них как бы отпадает необходимость. В результате этого корневая система растений уменьшает выделение органических соединений, а их объем составлял около половины массы надземной части, и фотосинтез растений снижается. Активизируются токсинообразующие микрогрибы, численность которых в естественных условиях контролируется полезными микроорганизмами. Внесение извести не спасает положение, а приводит иногда к увеличению заражённости почвы возбудителями корневой гнили.

Минеральные удобрения вызывают сильную депрессию почвенных животных: ногохвосток, круглых червей и фитофагов (они питаются растениями), а также снижение ферментативной активности почвы. А она формируется деятельностью всех почвенных растений и живых существ почвы, при этом ферменты попадают в почву в результате их выделения живыми организмами, отмирающими микроорганизмами, Установлено, что применение минеральных удобрений снижает активность почвенных ферментов более чем в два раза.

ПРОБЛЕМЫ ЗДОРОВЬЯ ЧЕЛОВЕКА

В организме человека нитраты, поступающие в пищу, всасываются в пищеварительный тракт, попадают в кровь, а с ней - в ткани. Около 65% нитратов превращаются в нитриты уже в полости рта. Нитриты окисляют гемоглобин до метагемоглобина, имеющую темную коричневую окраску; он не способен переносить кислород. Норма метагемоглобина в организме - 2%, а большее его количество вызывает различные заболевания. При 40% метагемоглобина в крови человек может умереть. У детей ферментативная система слабо развита, и поэтому нитраты для них более опасны. Нитраты и нитриты в организме превращаются в нитрозосоединения, являющиеся канцерогенами. В опытах на 22 видах животных было доказано, что эти нитрозосоединения обуславливают образование опухолей на всех органах, кроме костей. Нитрозоамины, обладая гепатотоксическими свойствами, вызывают также заболевание печени, в частности гепатит. Нитриты ведут к хронической интоксикации организма, ослабляют иммунную систему, снижают умственную и физическую работоспособность, проявляют мутагенные и эмбринотоксические свойства.

Для овощей установлены предельные нормы содержания нитратов в мг/кг. Эти нормы постоянно корректируются в сторону увеличения. Уровень предельно допустимой концентрации нитратов, принятый сейчас в России, и оптимальная кислотность почвы для некоторых овощей даны в таблице (см. ниже).

Реальное содержание нитратов в овощах, как правило, превышает норму. Максимальная суточная доза нитратов, не оказывающая отрицательного влияния на организм человека, - 200-220 мг на 1 кг массы тела. Как правило, реально в организм поступают 150-300 мг, а иногда до 500 мг на 1 кг массы тела. Повышая урожайность культур, минеральные удобрения влияют на их качество. В растениях уменьшается содержание углеводов и увеличивается количество сырого протеина. В картофеле уменьшается содержание крахмала, а в зерновых культурах изменяется аминокислотный состав, т.е. питательность белка снижается.

Применение минеральных удобрений при выращивании сельскохозяйственных культур влияет также на хранение продуктов. Снижение сахара и сухого вещества в свекле и других овощах ведёт к ухудшению их лёжкости при хранении. У картофеля сильнее темнеет мякоть, при консервировании овощей нитраты вызывают коррозию металла банок. Известно, что нитратов больше в жилках листьев у салатов, шпинатов, в сердцевине моркови сосредотачивается до 90% нитратов, в верхней части свеклы - до 65%, их количество увеличивается при хранении сока и овощей при высокой температуре. Овощи с грядки лучше убирать зрелыми и во второй половине дня - тогда в них меньше нитратов. Откуда берутся нитраты, и когда эта проблема возникла? Нитраты в продуктах были всегда, просто их количество в последнее время растёт. Растение питается, берет из почвы азот, азот накапливается в тканях растения, это явление нормальное. Другое дело, когда этого азота в тканях имеется избыточное количество. Нитраты сами по себе не опасны. Часть из них выводится из организма, другая часть преобразуется в безвредное и даже полезные соединения. А избыточная часть нитратов превращается в соли азотистой кислоты - это и есть нитриты. Они и лишают красные кровяные тельца возможности питать кислородом клетки нашего организма. В результате нарушается обмен веществ, страдает ЦНС - центральная нервная система, снижается противодействие организма болезням. Среди овощей чемпион по накоплению нитратов - свекла. Меньше их в капусте, петрушке, луке.


Внесение минеральных удобрений оказывает значительное влияние на популяции вредных организмов, которые в неподвижном (пропагулы фитопатогенов, семена сорняков) или малоподвижном (нематоды, личинки фитофагов) состоянии длительное время выживают, сохраняются или обитают в почве. Особенно широко в почвах представлены возбудители обыкновенных корневых гнилей (В. sorokiniana, виды p. Fusarium ). Название вызываемых ими заболеваний - "обыкновенные" гнили - подчеркивает широту ареалов на сотнях растений-хозяев. Кроме того, они относятся к разным экологическим группам почвенных фитопатогенов: В. sorokiniana - к временным обитателям почвы, а виды рода Fusarium - к постоянным. Это делает их удобными объектами для выяснения закономерностей, характерных для группы почвенных, или корневых, инфекций в целом.
Под влиянием минеральных удобрений агрохимические свойства пахотных почв существенно меняются по сравнению с их аналогами на целинных и залежных участках. Это оказывает большое влияние на выживаемость, жизнеспособность, а следовательно, и численность фитопатогенов в почве. Покажем это на примере В. sorokiniana (табл. 39).


Приведенные данные свидетельствуют, что воздействие агрохимических свойств почвы на плотность популяции В. sorokiniana является более значительным в агроэкосистемах зерновых культур, чем в естественных экосистемах (целинные почвы): индекс детерминации, свидетельствующий о доле влияния рассматриваемых факторов, составляет соответственно 58 и 38 %. Чрезвычайно важно, что самыми значимыми экологическими факторами, изменяющими плотность популяции возбудителя в почве, являются в агроэкосистемах - азот (NO3) и калий (K2O), а в естественных экосистемах - гумус. В агроэкосистемах возростает зависимость плотности популяции гриба от pH почвы, а также содержания подвижных форм фосфора (P2O5).
Рассмотрим более подробно влияние отдельных видов минеральных удобрений на жизненный цикл почвенных вредных организмов.
Азотные удобрения.
Азот относится к основным элементам, необходимым для жизнедеятельности как растений-хозяев, так и вредных организмов. Он входит в состав четырех элементов (Н, О, N, С), из которых на 99 % состоят ткани всех живых организмов. Азот как седьмой элемент таблицы Менделеева, имеющий во втором ряду 5 электронов, может достраивать их до 8 или терять, замещаясь кислородом. Благодаря этому образуются устойчивые связи с другими макро- и микроэлементами.
Азот является составной частью белков, из которых создаются все их основные структуры и которые обусловливают активность генов, включая систему растения-хозяева - вредные организмы. Азот входит в состав нуклеиновых кислот (рибонуклеиновой РНК и дезоксирибонуклеиновой ДНК), обусловливающих хранение и передачу наследственной информации об эволюционно-экологических взаимоотношениях вообще и между растениями и вредными организмами в экосистемах, в частности. Поэтому внесение азотных удобрений служит мощным фактором как стабилизации фитосанитарного состояния агроэкосистем, так и его дестабилизации. Это положение получило подтверждение при массовой химизации сельского хозяйства.
Растения, обеспеченные азотным питанием, отличаются лучшим развитием надземной массы, кустистостью, площадью листовой по-верности, содержанием хлорофилла в листьях, белковостью зерна и содержанием в нем клейковины.
Главными источниками питания азотом как растений так и вредных организмов являются соли азотной кислоты и соли аммония.
Под влиянием азота изменяется главная жизненная функция вредных организмов - интенсивность размножения, а следовательно и роль возделываемых растений в агроэкосистемах как источников воспроизводства вредных организмов. Возбудители корневых гнилей временно увеличивают свою популяцию в отсутствии растений-хозяев, используя минеральный азот, вносимый в виде удобрений, для непосредственного потребления (рис. 18).


В отличие от минерального азота, действие органики на возбудителей болезней происходит через микробное разложение органического вещества. Поэтому увеличение органического азота в почве коррелирует с ростом популяции почвенной микрофлоры, среди которой существенную долю составляют антагонисты. Обнаружена высокая зависимость численности популяции гельминтоспориозной гнили в агроэкосистемах от содержания минерального азота, а в естественных, где преобладает органический азот - от содержания гумуса. Тем самым условия азотного питания растений-хозяев и возбудителей корневых гнилей в агро- и естественных экосистемах различаются: они более благоприятны в агроэкосистемах при обилии азота в минеральной форме, и менее - в естественных экосистемах, где минеральный азот присутствует в меньшем количестве. Связь численности популяции В. sorokiniana с азотом в естественных экосистемах тоже проявляется, но количественно менее выражена: доля влияния на популяцию составляет в почвах естественных экосистем Западной Сибири 45 % против 90 % в агроэкосистемах. Наоборот, доля влияния органического азота более весома в естественных экосистемах - соответственно 70 % против 20 %. Внесение азотных удобрений на черноземах значительнее стимулирует размножение В. sorokiniana в сравнении с фосфорным, фосфорно-калийным и полным удобрениями (см. рис. 18). Однако эффект стимуляции резко различается в зависимости от форм азотных удобрений, усваиваемых растениями: он был максимальным при внесении нитрата магния, натриевой селитры и минимальным - при использовании сульфата аммония.
По данным И. И. Черняевой, Г. С. Муромцева, Л. Н. Коробовой, В. А. Чулкиной и др., сульфат аммония на нейтральных и слабощелочных почвах достаточно эффективно подавляет прорастание пропагул фитопатогенов и снижает плотность популяций таких широко распространенных фитопатогенов как виды родов Fusarium, Helminthosporium, Ophiobolus и утрачивает это качество при совместном внесении с известью. Механизм подавления объясняется поглощением иона аммония корнями растений и выделением в ризосферу корней иона водорода. В результате этого в ризосфере растений повышается кислотность почвенного раствора. Прорастание спор фитопатогенов подавляется. Кроме того, аммоний - как менее подвижный элемент - обладает пролонгированным действием. Он поглощается почвенными коллоидами и постепенно высвобождается в почвенный раствор.
Аммонификация осуществляется аэробными и анаэробными микроорганизмами (бактериями, актиномицетами, грибами) , среди которых выявлены активные антагонисты возбудителей корневых гнилей. Корреляционный анализ показывает, что между численностью В. sorokiniana в почвах и численностью аммонификаторов на черноземных почвах Западной Сибири существует обратная тесная зависимость: r = -0,839/-0,936.
Содержание азота в почве оказывает влияние на выживаемость фитопатогенов на(в) инфицированных растительных остатках. Так, выживаемость Ophiobolus graminis и Fusarium roseum была выше на соломе в почвах, богатых азотом, в то время как для В. sorokiniana , наоборот, - в почвах с низким его содержанием. При усилении минерализации растительных остатков под влиянием азотно-фосфорных удобрений происходит активное вытеснение В. sorokiniana: популяция возбудителя гнили на растительных остатках при внесение NP в 12 раз меньше, чем на растительных остатках без внесения удобрений.
Внесение азотных удобрений усиливает рост вегетативных органов растений, накопление в них небелкового азота (аминокислот), доступного для патогенов; растет обводненность тканей, уменьшается толщина кутикулы, клетки увеличиваются в объеме, оболочка их становится тоньше. Это облегчает проникновение возбудителей в ткани растений-хозяев, усиливает их восприимчивость к болезням. Чрезмерно высокие нормы внесений азотных удобрений вызывают дисбаланс в питании растений азотом и повышенное развитие болезней.
Е. П. Дурынина и Л. Л. Великанов отмечают, что высокая степень поражения растений при внесении азотных удобрений связана со значительным накоплением небелкового азота. Другие авторы связывают это явление с изменением количественного соотношения аминокислот при патогенезе болезней. Более сильное поражение ячменя В. sorokiniana отмечено в случае высокого содержания глутамина, треонина, валина и фенилаланина. Напротив, при высоком содержании аспарагина, пролина и аланина поражение было незначительным. Содержание серина и изолейцина повышается в растениях, выросших на нитратной форме азота, а глицина и цистеина - на аммонийной.
Установлено, что вертициллезная инфекция усиливается, когда в корневой зоне преобладает нитратный азот и, наоборот, ослабляется при замене его на аммонийную форму. Внесение под хлопчатник высоких доз азота (более 200 кг/га) в виде аммиачной воды, сжиженного аммиака, сульфата аммония, аммофоса, мочевины, цианамида кальция приводит к более значительному повышению урожая и существенному подавлению вертициллезной инфекции, чем при внесении аммиачной и чилийской селитры. Различия в действии нитратных и аммонийных форм азотных удобрений вызваны их различным влиянием на биологическую активность почвы. Соотношение С: N и отрицательное действие нитратов ослабевают на фоне внесения органических добавок.
Внесение азотных удобрений в аммонийный форме снижает процесс размножения овсяной цистообразующей нематоды и повышает физиологическую устойчивость к ней растений. Так, внесение сульфата аммония снижает численность нематоды на 78 %, а урожайность зерна увеличивается на 35,6 %. В то же время применение нитратных форм азотных удобрений, наоборот, способствует увеличению популяции овсяной нематоды в почве.
Азот лежит в основе всех ростовых процессов в растении. В связи с этим поражаемость растений болезнями и вредителями слабее при оптимальном питании растений. При повышении развития болезней на азотном фоне питания катастрофического снижения урожайности не происходит. Ho сохранность продукции при хранении значительно снижается. Благодаря интенсивности ростовых процессов соотношение между пораженной и здоровой тканью органов при внесении азотных удобрений изменяется в сторону здоровой. Так, при поражении зерновых культур корневыми гнилями на азотном фоне питания одновременно происходит рост вторичной корневой системы, в то время как при дефиците азота рост вторичных корней подавляется.
Таким образом, потребности растений и вредных организмов в азоте как элементе питания совпадают. Это приводит как к росту урожайности при внесении азотных удобрений, так и к размножению вредных организмов. Более того, в агроэкосистемах преобладают минеральные формы азота, особенно нитратная, которые непосредственно потребляются вредными организмами. В отличие от агроэкосистем, в естественных экосистемах преобладает органическая форма азота, потребляемая вредными организмами только при разложении органических остатков микрофлорой. Среди неё много антагонистов, подавляющих всех возбудителей корневых гнилей, но особенно специализированных, как В. sorokiniana. Это ограничивает размножение возбудителей корневых гнилей в естественных экосистемах, где их численность постоянно поддерживается на уровне ниже ПВ.
Дробные внесения азотных удобрений в сочетании с фосфорными, замена нитратной формы на аммонийную, стимулируют общую биологическую и антагонистическую активность почв, служат реальными предпосылками стабилизации и снижения численности вредных организмов в агроэкосистемах. К этому добавляется положительное действие азотных удобрений на повышение выносливости (адаптивности) к вредным организмам - энергично растущие растения обладают повышенными компенсаторными способностями в ответ на поражение и повреждения, наносимые им возбудителями болезней и вредителями.
Фосфорные удобрения.
Фосфор входит в состав нуклеиновых кислот, макроэргических соединений (АТФ), участвуя в синтезе белков, жиров, углеводов, аминокислот. Он принимает участие в фотосинтезе, дыхании, регуляции проницаемости мембран клеток, в образовании и переносе энергии, необходимой для жизнедеятельности растений и животных. Основная роль в энергетических процессах клеток, тканей и органов живых организмов принадлежит АТФ (аденозинтрифосфорной кислоте). Без АТФ не могут проходить ни процессы биосинтеза, ни распада метаболитов в клетках. Роль фосфора в биологическом переносе энергии уникальна: устойчивость АТФ в средах, где идет биосинтез, больше устойчивости других соединений. Это связано с тем, что богатая энергией связь защищена отрицательным зарядом фосфорила, отталкивающим молекулы воды и ионы ОН-. В противном случае АТФ легко подвергалась бы гидролизу и распаду.
При обеспечении растений фосфорным питанием в них усиливаются процессы синтеза, активизируется рост корней, ускоряется созревание сельскохозяйственных культур, возрастает засухоустойчивость, улучшается развитие генеративных органов.
Главным источником фосфора для растений в агроэкосистемах являются фосфорные удобрения. Растения поглощают фосфор в начальные фазы роста и очень чувствительны к его недостатку в этот период.
Внесение фосфорных удобрений оказывает значительное влияние на развитие корневых гнилей. Этот эффект достигается даже при внесении удобрений в небольших дозах, в рядки при посеве. Положительное действие фосфорных удобрений объясняется тем, что фосфор способствует усиленному росту корневой системы, утолщению механических тканей, а главное, определяет поглотительную (мета-болитическую) активность корневой системы.
Корневая система пространственно и функционально обеспечивает поглощение, транспорт и метаболизм фосфора. Причем значение корневой системы для поглощения фосфора неизмеримо выше, чем азота. В отличие от нитратов, анионы фосфора поглощаются почвой и остаются в нерастворенной форме. Растение может получить их только благодаря корням, непосредственно вступающим в контакт с анионами в толще почвы. Благодаря правильному фосфорному питанию снижается предрасположенность к возбудителям болезней со стороны корневой системы, особенно вторичной. Последнее совпадает с повышенной физиологической активностью вторичных корней в снабжении растения фосфором. Каждая единица объема вторичных корней получала (в опыте с мечеными атомами) в два раза больше фосфора в сравнении с зародышевыми корнями.
Внесение фосфорного удобрения замедляло развития обыкновенной корневой гнили во всех изученных зонах Сибири даже тогда, когда в “первом минимуме” в почве находится азот (северная лесостепь). Положительное действие фосфора сказывалось и при основном и при рядковом внесении в небольшой (Р15) дозе. Рядковое удобрение более целесообразно при ограниченном количестве удобрений.
Эффективность фосфорных удобрений для вегетативных органов растений различается: оздоровление подземных, особенно вторичных корней проявлялось во всех зонах, а надземных - только в увлажненных и умеренно увлажненных (подтайга, северная лесостепь). В пределах одной зоны эффект оздоровления от фосфорного удобрения на подземных органах был в 1,5-2,0 раза выше, чем на надземных. На почвозащитных фонах обработки в степной зоне особенно эффективны в оздоровлении почвы и вегетативных органов растений яровой пшеницы азотно-фосфорные удобрения в расчетной норме. Усиление ростовых процессов под влиянием минеральных удобрений приводило к повышению выносливости растений к обыкновенной корневой гнили. При этом ведущая роль принадлежала тому макроэлементу, содержание которого в почве минимально: в горно-степной зоне - фосфору, в северной лесостепи - азоту. В горно-степной зоне, например, выявлена корреляция между уровнем развития корневых гнилей (%) по годам и величиной урожайности зерна (ц/га):


Корреляция имеет обратный характер: чем слабее развитие корневых гнилей, тем выше урожайность зерна, и наоборот.
Аналогичные результаты получены в южной лесостепи Западной Сибири, где обеспеченность почвы подвижными формами P2O5 была средней. Недобор зерна от обыкновенной корневой гнили самым высоким оказался в аарианте без применения удобрений. Так, в среднем за 3 года он составил по ячменю сорта Омский 13709 32,9 % против 15,6-17,6 в случае внесения фосфорного, фосфорно-азотного и полного минерального удобрений, или почти в 2 раза выше. Внесение азотного удобрения, даже если азот находился в почве в “первом минимуме”, сказывалось главным образом на повышении выносливости растений к болезни. В результате этого, в отличие от фосфорного фона, корреляция между развитием болезни и урожайностью зерна по азоту статистически не доказана.
Многолетние исследования, проведенные на Ротамстедской опытной станции (Англия), свидетельствуют о том, что биологическая эффективность фосфорных удобрений против корневых гнилей (возбудитель Ophiobolus graminis ) зависит от плодородия почв и предшественников, изменяясь от 58 % до 6-и кратного положительного эффекта. Максимальная эффективность достигалась при комплексном применении фосфорных удобрений с азотными.
По данным исследований, проведенных на каштановых почвах Республики Алтай, существенное снижение популяции В. sorokiniana в почве достигается там, где фосфор содержится в почве а первом минимуме (см. рис. 18). Добавление а этих условиях азотных удобрений в норме N45 и даже калийных в норме К45 фитосанитарное состояние почв практически не улучшает. Биологическая эффективность фосфорного удобрения в дозе Р45 составила 35,5 %, а полного удобрения - 41,4% по сравнению с фоном, без применения удобрений. При этом существенно возрастает количество конидий с признаками деградации (разложения).
Повышение устойчивости растений под влиянием фосфорного удобрения ограничивает вредоносность проволочников, нематод, сокращая критический период в результате интенсификации ростовых процессов на начальных фазах.
Внесение фосфорно-калийных удобрений оказывает прямое токсическое действие на фитофагов. Так, при внесении фосфорно-калийных удобрений снижается численность проволочников в 4-5 раз, а при добавлении к ним азотных удобрений - в 6-7 раз по сравнению с их исходной численностью, и в 3-5 раз по сравнению с контрольными данными без применения удобрений. Особенно резко снижается популяция посевного щелкуна. Действие минеральных удобрений на снижение численности проволочников объясняется тем, что покровы вредителей обладают избирательной проницаемостью к солям, содержащимся в минеральных удобрениях. Быстрее других проникают и наиболее токсичны для проволочников катионы аммония (NH4+), затем катионы калия и натрия. Наименее токсичны катионы кальция. Анионы солей удобрений можно расположить в следующем убывающем порядке по их токсическому действию на проволочников: Cl-, N-NO3-, PO4-.
Токсическое действие минеральных удобрений на проволочников изменяется в зависимости от гумусности почв, их механического состава и величины pH. Чем меньше органического вещества содержится в почве, ниже pH и легче механический состав почвы, тем выше токсическое действие минеральных, в том числе фосфорных удобрений на насекомых.
Калийные удобрения.
Находясь в клеточном соке, калий сохраняет легкую подвижность, удерживаясь митохондриями в протоплазме растений днем и частично выделяется через корневую систему ночью, а днем вновь поглощается. Дожди вымывают калий, особенно из старых листьев.
Калий способствует нормальному течению фотосинтеза, усиливает отток углеводов из пластинок листьев в другие органы, синтез и накопление витаминов (тиамина, рибофлавина и др.). Под влиянием калия растения приобретают способность удерживать воду и легче переносить кратковременную засуху. У растений утолщается клеточная оболочка, повышается прочность механических тканей. Эти процессы способствуют повышению физиологической устойчивости растений к вредным организмам и неблагоприятным абиотическим факторам внешней среды.
По данным Международного института калийных удобрений (750 полевых экспериментов) калий снижал поражаемость растений грибными болезнями в 526 случаях (71,1 %), был неэффективным в 80 (10,8%) и увеличивал поражаемость в 134 (18,1 %) случаях. Он особенно эффективен в оздоровлении растений в увлажненных прохладных условиях даже при высоком содержании его в почве. В пределах Западно-Сибирской низменности калий стабильно производил положительный эффект оздоровления почв в зонах подтайги (табл. 40).

Внесение калийных удобрений даже при высоком содержании калия в почвах всех трех зон существенно снижало заселенность почв В. sorokiniana. Биологическая эффективность калия составляла 30-58 % против 29-47 % фосфорного и при неустойчивой эффективности азотного удобрения: в подтайге и северной лесостепи положительна (18-21 %), в горно-степной зоне - отрицательна (- 64 %).
Общая микробиологическая активность почвы и концентрация в ней K2O оказывают решающее воздействие на выживаемость Rhizoctonia solani. Калий способен повышать приток углеводов в корневую систему растений. Поэтому наиболее активно формирование микоризы пшеницы идет при внесении калийных удобрений. Микоризообразование снижается при внесении азота из-за расхода углеводов на синтез азотсодержащих органических соединений. Влияние фосфорного удобрения было в этом случае несущественным.
Кроме влияния на интенсивность размножения возбудителей и выживаемость их в почве, минеральные удобрения воздействуют на физиологическую устойчивость растений к инфекции. При этом калийные удобрения усиливают в растениях процессы, задерживающие распад органических веществ, повышают активность каталазы и пероксидазы, снижают интенсивность дыхания и потери сухих веществ.
Микроэлементы.
Микроэлементы составляют обширную группу катионов и анионов, которые оказывают многогранное воздействие на интенсивность и характер спороношения возбудителей болезней, а также устойчивость к ним растений-хозяев. Важнейшей особенностью действия микроэлементов является их относительно малые дозы, необходимые для ослабления вредоносности многих заболеваний.
С целью снижения вредоносности болезней рекомендуется применять следующие микроэлементы:
- гельминтоспориоз зерновых культур - марганец;
- вертициллез хлопчатника - бор, медь;
- корневая гниль хлопчатника - марганец;
- фузариозное увядание хлопчатника - цинк;
- корнеед свеклы - железо, цинк;
- ризоктониоз картофеля - медь, марганец,
- рак картофеля - медь, бор, молибден, марганец;
- черная ножка картофеля - медь, марганец;
- вертициллез картофеля - кадмий, кобальт;
- черная ножка и кила капусты - марганец, бор;
- фомоз моркови - бор;
- черный рак яблони - бор, марганец, магний;
- серая гниль клубники - марганец.
Механизм действия микроэлементов на разных возбудителей болезней различен.
В ходе патогенеза корневых гнилей на ячмене, например, нарушаются физиолого-биохимические процессы и разбалансируется элементный состав растений. В фазе кущения снижается содержание К, Cl, Р, Mn, Cu, Zn и растет концентрация Fe, Si, Mg и Ca. Подкормка растений микроэлементами, в которых растение испытывает дефицит, стабилизирует метаболитические процессы в растениях. Тем самым возрастает их физиологическая устойчивость к возбудителям.
Различные возбудители нуждаются в различных микроэлементах. На примере возбудителя техасской корневой гнили (возбудитель Phymatotrichum omnivorum ) показано, что только Zn, Mg, Fe увеличивают биомассу мицелия возбудителя, в то время Ca, Co, Cu, Al угнетают этот процесс. Поглощение Zn начинается со стадии прорастания конидий. У Fusarium graminearum Zn влияет на образование желтых пигментов. Большинство грибов требуют наличия в субстрате Fe, В, Mn, Zn, хотя и в разных концентрациях.
Бор (В), воздействуя на проницаемость клеточных мембран растений и транспорт углеводов, изменяет их физиологическую устойчивость к фитопатогенам.
Выбор оптимальных доз микроудобрений, например, при внесении Mn и Co на хлопчатнике, снижает развитие вилта на 10-40 %. Применение микроэлементов является одним из эффективных способов оздоровления картофеля от парши обыкновенной. По данным известного немецкого фитопатолога Г. Бразда (G. Brazda), марганец снижает развитие парши обыкновенной на 70-80 %. Условия, способствующие поражению клубней картофеля паршой, совпадают с факторами марганцевого голодания. Есть прямая зависимость между развитием парши обыкновенной и содержанием марганца в кожуре клубней картофеля. При недостатке марганца кожура становится шершавой и трескается (см. рис. 4). Возникают благоприятные условия для заражения клубней. По данным ВНИИ льна, при недостатке бора в почве у льна нарушается транспорт углеводов, способствующий нормальному развитию ризосферных и почвенных микроорганизмов. Внесение бора в почву уменьшает агрессивность возбудителя фузариоза льна в два раза при росте урожайности семян на 30 %.
Влияние микроудобрений на развитие фитофагов и других почвенных вредных организмов изучено недостаточно. Они в большей степени применяются для оздоровления посевов от наземно-воздушных, или листо-стеблевых, вредных организмов.
Микроэлементы применяются при обработке посевного и посадочного материала. Они вносятся в почву вместе с NPK, либо при опрыскивании растений или при поливе. Во всех случаях эффективность микроудобрений в защите растений от почвенных вредных организмов, особенно фитопатогенов, возрастает при внести их на фоне полного минерального удобрения.
Полное минеральное удобрение.
Внесение полного минерального удобрения на основе агрохимических картограмм и нормативного метода оказывает наиболее благоприятное влияние на фитосанитарное состояние почв и посевов в отношении почвенных, или корне клубневых, инфекций, оздоравливая почву и корнеклубнеплоды, которые используются на продовольствие и на семена.
Оздоровление почв с помощью полного минерального удобрения под яровую пшеницу и ячмень происходит практически во всех почвенно-климатических зонах (табл. 41).

Биологическая эффективность полного минерального удобрения изменялась по зонам от 14 до 62 %: более высокой она была в относительно увлажненных зонах, чем в засушливой (Кулундинская степь), а в пределах зоны - в бессменных посевах, где отмечалась худшая фитосанитарная ситуация.
Роль минеральных удобрений в оздоровлении почв снижается, когда высеваются семена, зараженные фитопатогенами. Зараженные семена создают микроочаги возбудителя инфекции в почвы и вдобавок возбудитель, находившийся на(в) семенах, первым занимает экологическую нишу на пораженных органах растений.
Все минеральные удобрения, снижающие pH на дерново-подзолистой почве, негативно влияют на выживаемость пропагул В. sorokiniana в почве (r = -0,737). Так, калийные удобрения, подкисляя почву, снижают численность популяции фитопатогена, особенно в недостаточно влажной почве.
Повышение физиологической устойчивости растений к болезням приводит к оздоровлению подземных и надземных вегетативных органов. Еще Д. Н. Прянишников отмечал, что у голодающих растений пропорциональное развитие вегетативных органов нарушается. В зонах достаточного (тайга, подтайга, предгорья) и умеренного (лесостепь) увлажнения в Западной Сибири под влиянием полного минерального удобрения существенно возрастает оздоровление как подземных (первичные, вторичные корни, эпикотиль), так и надземных (прикорневые листья, основание стебля) вегетативных органов. В то же время в засушливых условиях (Кулундинская степь) увеличивается количество здоровых корней, особенно вторичных. Оздоровление вегетативных органов растений на удобренном фоне связано преимущественно с улучшением фитосанитарного состояния почвы (r = 0,732 + 0,886), а также с повышением физиологической устойчивости вегетативных органов к фузариозно-гельминтоспориозным заболеваниям, преобладанием в них процессов синтеза над гидролизом.
Для повышения физиологической устойчивости к возбудителям болезней важен баланс питательных веществ, особенно в отношении N-NO3, P2O5, K2O, который различается по культурам. Так, для повышения физиологической устойчивости растений картофеля к болезням отношение N: P: К рекомендуется 1: 1: 1,5 или 1: 1,5: 1,5 (преобладают фосфор и калий), а для повышения физиологической устойчивости хлопчатника к вилту на полях, заселенных пропагула-ми возбудителя выше ПВ, выдерживают N: P: К как 1: 0,8: 0,5 (преобладает азот).
Полное минеральное удобрение влияет на популяции фитофагов, обитающих в почве. Как общая закономерность отмечено снижение численности фитофагов при отсутствии заметного отрицательного влияния на энтомофагов. Так, смертность проволочников зависит от концентрации солей в почве, состава катионов и анионов, осмотического давления жидкостей в теле проволочников и наружном почвенном растворе. С повышением интенсивности обмена веществ у насекомых растет проницаемость их покровов для солей. Особенно проволочники чувствительны к минеральным удобрениям весной и летом.
Действие минеральных удобрений на проволочников зависит также от содержания гумуса в почве, ее механического состава и величин pH. Чем меньше в ней органического вещества, тем выше токсическое действие минеральных удобрений на насекомых. Биологическая эффективность NK и NPK на дерново-подзолистых почвах Белоруссии, внесенных под ячмень в звене севооборота ячмень - овес - гречиха, достигает в снижении численности проволочников соответственно 77 и 85 %. В то же время численность энтомофагов (жужелиц, стафилинид) в процентном отношении к вредителям не уменьшается, а в ряде случаев даже возрастает.
Систематическое применение полного минерального удобрения на полях ОПХ НИИСХ ЦЧП им. В. В. Докучаева способствует снижению численности и вредоносности проволочников до уровня ЭПВ. Вследствие этого в хозяйстве не требуется применения инсектицидов против этих вредителей.
Минеральные удобрения существенно ограничивают интенсивность размножения почвенных, или корне-клубневых, вредных организмов, снижают численность и длительность выживания их в почве и на(в) растительных остатках из-за повышения биологической и антагонистической активности почвы, роста устойчивости и выносливости (адаптивности) растений к вредным организмам. Внесение азотных удобрений повышает преимущественно выносливость (компенсаторные механизмы) растений к вредным организмам, а внесение фосфорных и калийных - физиологическую устойчивость к ним. Полное минеральное удобрение совмещает оба механизма положительного действия.
Устойчивый фитосанитарный эффект минеральных удобрений достигается дифференцированным подходом по зонам и культурам при определении доз и баланса питательных веществ макро- и микроудобрений на основе агрохимических картограмм и нормативного метода расчета. Однако с помощью минеральных удобрений кардинальное оздоровление почв от возбудителей корневых инфекций не достигается. Отдача зерна от возрастающих доз минеральных удобрений в условиях химизации земледелия снижается, если сельскохозяйственные культуры возделываются на почвах, инфицированных выше порога вредоносности. Это обстоятельство требует совместного применения фитосанитарных предшественников в севообороте, минеральных, органических удобрений и биологических препаратов для обогащения ризосферы растений антагонистами и снижения инфекционного потенциала возбудителей в почвах ниже ПВ. Для этого составляются почвенные фитосанитарные картограммы (ФПК) и на их основе разрабатываются мероприятия по оздоровлению почв.
Оздоровление почв является на современном этапе развития сельского хозяйства фундаментальной предпосылкой для повышения устойчивости и адаптивности агроэкосистем при переходе к адаптивно-ландшафтному земледелию и адаптивному растениеводству.

http://biofile.ru/bio/4234.html

К негативным последствиям применения удобрений следует отнести и увеличение подвижности некоторых микроэлементов, содержащихся в почве. Они более активно вовлекаются в геохимическую миграцию. Это ведет к возникновению в пахотном слое дефицита В, Zn, Сu, Мn . Ограниченное поступление микроэлементов в растения неблагоприятно влияет на процессы фотосинтеза и передвижение ассимилятов, снижает их устойчивость к заболеваниям, недостаточному и избыточному увлажнению, высоким и низким температурам . Основной причиной нарушений в обмене веществ растений при недостатке микроэлементов является снижение активности ферментных систем.

Недостаток микроэлементов в почве вынуждает применять микроудобрения. Так, в США их использование в период с 1969 по 1979 г.г. возросло с 34,8 до 65,4 тыс. т действующего вещества .

В связи с глубокими изменениями в агрохимических свойствах почв, происходящими в результате применения удобрений, возникла необходимость изучения их влияния на физические характеристики пахотного слоя. Основными показателями физических свойств почвы являются агрегатный состав и водопрочность почвенных частиц. Анализ результатов ограниченного количества исследований, проведенных с целью изучения влияния минеральных удобрений на физические свойства почвы, не позволяет сделать определенных выводов. В некоторых опытах наблюдалось ухудшение физических свойств . При повторной культуре картофеля доля почвенных агрегатов более 1 мм в варианте с внесением азота, фосфора и калия, по сравнению с неудобренным участком, снижалась с 82 до 77%. В других исследованиях при внесении полного минерального удобрения на протяжении пяти лет содержание в черноземе агрономически ценных агрегатов уменьшилось с 70 до 60%, а водопрочных - с 49 до 36% .

Чаще всего отрицательное влияние минеральных удобрений на агрофизические свойства почвы обнаруживается при изучении ее микроструктуры.

Микроморфологические исследования показали, что даже небольшие дозы минеральных удобрений (30-45 кг/га) оказывают отрицательное влияние на микроструктуру почвы, сохраняющееся на протяжении 1-2 лет после их внесения. Возрастает плотность упаковки микроагрегатов, снижается видимая порозность, уменьшается доля зернистых агрегатов . Продолжительное внесение минеральных удобрений ведет к снижению доли частиц губчатого микросложения и к увеличению на 11% неагрегатированного материала . Одной из причин ухудшения структуры является обеднение пахотного слоя экскрементами почвенных животных .

Вероятно, агрохимические и агрофизические свойства почв тесно связаны между собой, и поэтому увеличивающаяся кислотность, обеднение пахотного горизонта основаниями, уменьшение содержания гумуса, ухудшение биологических свойств должны закономерно сопровождаться ухудшением агрофизических свойств.

В целях предотвращения отрицательного влияния минеральных удобрений на свойства почвы следует периодически проводить известкование. К 1966 г. ежегодная площадь известкования в бывшем СССР превысила 8 млн. га, а объем вносимой извести составил 45,5 млн. т. Однако это не компенсировало потерь кальция и магния. Поэтому доля земель, подлежащих известкованию, в ряде регионов не уменьшилась, а даже несколько увеличилась. Для того, чтобы не допустить увеличения площади кислых земель, предполагалось удвоить поставки сельскому хозяйству известковых удобрений и довести их к 1990 г. до 100 млн.т .

Известкование, понижая кислотность почвы, одновременно вызывает повышение газообразных потерь азота. При проведении этого приема они возрастают в 1,5-2 раза . Такая реакция почв на внесение мелиорантов является результатом изменений в направленности микробиологических процессов, что может стать причиной нарушения геохимических круговоротов. В связи с этим высказывались сомнения в целесообразности использования известкования . Кроме того, известкование усугубляет и другую проблему – загрязнения почв токсическими элементами.

Минеральные удобрения являются основным источником загрязнения почв тяжелыми металлами (ТМ) и токсичными элементами. Это связано с содержанием в сырье, используемом для производства минеральных удобрений, стронция, урана, цинка, свинца, ванадия, кадмия, лантаноидов и других химических элементов. Их полное извлечение или не предусматривается вообще, или осложняется технологическими факторами . Возможное содержание сопутствующих элементов в суперфосфатах и в других видах минеральных удобрений, широко применяемых в современном земледелии, приведено в таблицах 1 и 2.

В больших количествах элементы-загрязнители обнаруживаются в извести. Ее внесение в количестве 5 т/га может изменить природные уровни кадмия в почве на 8,9% от валового содержания .

Таблица 1. Содержание примесей в суперфосфатах, мг/кг

При внесении минеральных удобрений в дозе 109 кг/га NPK в почву поступает примерно 7,87 г меди, 10,25 – цинка, 0,21 – кадмия, 3,36 – свинца, 4,22 – никеля, 4,77 – хрома . По данным ЦИНАО, за весь период использования фосфорных удобрений в почвы бывшего СССР внесено 3200 т кадмия, 16633 – свинца, 553 – ртути . Большая часть химических элементов, попавших в почву, находится в слабоподвижном состоянии. Период полувыведения кадмия составляет 110 лет, цинка – 510, меди – 1500, свинца – несколько тысяч лет .

Таблица 2. Содержание тяжелых металлов в удобрениях и извести, мг/кг

Загрязнение почвы тяжелыми и токсичными металлами ведет к накоплению их в растениях. Так, в Швеции концентрация кадмия в пшенице за текущее столетие увеличилась вдвое. Там же при применении суперфосфата в суммарной дозе 1680 кг/га, внесенной частями за 5 лет, наблюдали повышение содержания кадмия в зерне пшеницы в 3,5 раза . По данным некоторых авторов, при загрязнении почвы стронцием происходило трехкратное увеличение его содержания в клубнях картофеля . В России пока еще не уделяется достаточного внимания загрязнению растениеводческой продукции химическими элементами.

Использование загрязненных растений в качестве продуктов питания или кормов является причиной возникновения у человека и сельскохозяйственных животных различных заболеваний. К наиболее опасным тяжелым металлам относят ртуть, свинец и кадмий. Попадание в организм человека свинца ведет к нарушениям сна, общей слабости, ухудшению настроения, нарушению памяти и снижению устойчивости к бактериальным инфекциям . Накопление в продуктах питания кадмия, токсичность которого в 10 раз выше свинца, вызывает разрушение эритроцитов крови, нарушение работы почек, кишечника, размягчение костной ткани . Парные и тройные сочетания тяжелых металлов усиливают их токсический эффект .

Экспертным комитетом ВОЗ разработаны нормативы поступления в человеческий организм тяжелых металлов. Предусматривается, что каждую неделю здоровый человек массой 70 кг может получать с пищевыми продуктами, без вреда для своего здоровья, не более 3,5 мг свинца, 0,625 мг кадмия и 0,35 мг ртути .

В связи с возрастанием загрязнения продуктов питания были приняты нормативы содержания ТМ и ряда химических элементов в продукции растениеводства (табл. 3).

Таблица 3. Предельно допустимые концентрации химических элементов, мг/кг сырого продукта

Элемент Хлебные продукты и зерно Овощи Фрукты Молочные продукты
Ртуть 0,01 0,02 0,01 0,005
Кадмий 0,02 0,03 0,03 0,01
Свинец 0,2 0,5 0,4 0,05
Мышьяк 0,2 0,2 0,2 0,05
Медь 0,5
Цинк 5,0
Железо 3,0
Олово - 100,0
Сурьма 0,1 0,3 0,3 0,05
Никель 0,5 0,5 0,5 0,1
Селен 0,5 0,5 0,5 0,5
Хром 0,2 0,2 0,1 0,1
Алюминий 1,0
Фтор 2,5 2,5 2,5 2,5
Йод 0,3

Загрязнение растениеводческой продукции ТМ и химическими элементами опасно для человека не только при непосредственном ее употреблении, но и при использовании на кормовые цели. Например, скармливание коровам растений, выращенных на загрязненных почвах, привело к увеличению концентрации кадмия в молоке до 17-30 мг/л , в то время как допустимый уровень составляет 0,01 мг/л.

Для предотвращения накопления химических элементов в молоке, мясе, исключения возможности отрицательного их влияния на состояние сельскохозяйственных животных во многих странах принимаются предельно допустимые концентрации (ПДК) для химических элементов, содержащихся в кормовых растениях. По стандартам ЕЭС безопасное содержание свинца в фураже составляет 10 мг/кг сухого вещества. В Нидерландах допустимый уровень содержания кадмия в зеленых кормах равен 0,1 мг/кг сухой массы .

Фоновое содержание химических элементов в почвах приведено в таблице 4. При накоплении ТМ в почве и последующем поступлении их в растения они концентрируются, в основном, в вегетативных органах, что объясняется защитной реакцией растений . Исключение составляет кадмий, который легко проникает как в листья и стебли, так и в генеративные части . Для правильной оценки степени накопления в растениях различных элементов необходимо знать их обычное содержание при выращивании сельскохозяйственных культур на незагрязненных почвах. Сведения по этому вопросу довольно разноречивы. Это объясняется большими различиями в химическом составе почв. Фоновое содержание свинца в почвах равно примерно 30, а кадмия - 0,5 мг/кг . Концентрация свинца в растениях, выращиваемых на чистых грунтах, составляет 0,009-0,045, а кадмия – 0,011-0,67 мг/кг сырого вещества .

Таблица 4. Содержание некоторых элементов в пахотных почвах, мг/кг

Элемент Обычное содержание ПДК Элемент Обычное содержание пдк
As 0,1-20 Ni 2-50
В 5-20 Pb 0,1-20
Be 0,1-5 Sb 0,01-0,5
Вг 1-10 Se 0,01-5
Cd 0,01-1 Sn 1-20
Со 1-10 Tl 0,01-0,5
Сг 2-50 Ti 10-5000
Сu 1-20 U 0,01-1
F 50-200 V 10-100
Ga 0,1-10 Zn 3-50
Hg 0,01-1 Mo 0,2-5

Установление жестких норм по загрязнению растений объясняется тем, что при выращивании их на загрязненных почвах содержание отдельных элементов может увеличиваться в десятки раз. В то же время некоторые химические элементы становятся токсичными при трех- и даже двукратном увеличении их концентрации. Например, содержание меди в растениях обычно составляет примерно 5-10 мг/кг в расчете на сухую массу. При концентрации 20 мг/кг растения становятся токсичными для овец, а при 15 мг/кг - для ягнят .

Глава 2 http://selo-delo.ru/8-zemelnie-resursi?start=16

В связи с уменьшением объема применения минеральных удобрений значимость органических удобрений как источника питательных элементов возрасла. Они являются наиболее полноценными по содержанию питательных элементов, необходимых растениям. В 1 т подстилочного навоза содержится 5 кг N, 2,5 кг P 2 O 5 , 6 кг К 2 О; 3 - 5 г В, 25 г Zn; 3,9 г Cu, 0,5 Мо и 50 г Mn. Следует иметь в виду, что себестоимость 1 кг питательных элементов, внесенных с твердым навозом, на 24 - 37 % ниже, чем в эквивалентном количестве минеральных удобрений. В повышении плодородия почв и урожайности сельскохозяйственных культур важная роль отводится органическим удобрениям.

Внесение органических удобрений оказывает положительное влияние на баланс гумуса в почве, улучшает воздушный и водный режим почвы, усиливает микробиологическую активность почвы. Из 1 т органических удобрений на суглинистых почвах образуется 50 кг/га гумуса, на супесчаных - 40 и песчаных - 35.

В настоящее время в мире на 1 га пашни вносят около 15 т/га органических удобрений. В США применяется около 14 т/га, Англии - 25, Нидерландах - 70 т/га. В Беларуси применение органических удобрений достигло в 1991 г. 83 млн. тонн, или 14,5 т/га.

В последние годы в Республике Беларусь ввиду систематического сокращения поголовья скота и резкого сокращения объемов заготовок торфа значительно снизилось применение органических удобрений, что привело к снижению темпов накопления гумуса, а в некоторых районах произошло уменьшение содержания гумуса. В 1995 г. применение органических удобрений снизилось в республике до 9,5, а в 1999 г. – до 8,2 т/га.

Одним из мероприятий, позволяющим снизить применение органических удобрений, является обоснование оптимальных размеров посевов многолетних трав и повышение их урожайности. В настоящее время на 1 га пропашных культур приходится 3 га многолетних трав. Даже при уменьшении объемов применения органических удобрений в последние годы за счет увеличения доли растительных остатков в общем объеме поступающего в почву органического вещества с 46 до 55% удалось в целом на пахотных почвах поддержать достигнутый уровень содержания гумуса в почве. Для поддержания бездефицитного баланса гумуса в республике необходимо обеспечить применение органических удобрений на уровне 50 млн. т/га, или 9 - 10 т/га. Предполагается, что в связи с возрастанием поголовья скота внесение органических удобрений может возрасти до 52,8 млн. тонн. Потребность в торфе республики составляет около 3 млн тонн.

При правильном применении окупаемость 1 т органических удобрений составляет: у зерновых - 20 кг, картофеля – 90, кормовых корнеплодов – 200, кукурузы (зеленая масса) – 150 кг.

В сельском хозяйстве применяются следующие виды органических удобрений:

1. Органические удобрения на основе отходов животноводства и птицеводства:

а) подстилочный навоз;

б) бесподстилочный навоз;

в) навозная жижа;

г) птичий помет;

2. Удобрения из природного органического сырья:

б) компосты;

3. Зеленое удобрение и использование побочной продукции растениеводства:

а) солома;

б) зеленое удобрение;

4. Органические удобрения на основе коммунальных и промышленных отходов:

а) промышленные и бытовые отходы;

б) осадки сточных вод;

в) гидролизный лигнин.

Подстилочный навоз - смесь жидких и твердых экскрементов животных с подстилкой. Жидкие экскременты животных относятся к калийно-азотному удобрению, а твердые - к азотно-фосфорному (табл. 5.1).

Качество навоза, его химический состав зависят: 1) от типа кормления; например, при содержании в рационе концентратов навоз содержит больше питательных веществ, чем при кормлении грубыми кормами; 2) вида животных (табл.5.2); 3) количества и вида подстилки; 4) способа хранения (табл. 5.3; 5.4)

В различном подстилочном материале содержится следующее количество питательных элементов:

При рыхлом, или горячем способе хранения, когда навоз не уплотняется, создаются аэробные условия, развиваются термофильные бактерии, температура внутри бурта достигает 50 - 60 0 С. Идет бурное разложение органического вещества, азот улетучивается в виде NН 3 , наблюдаются потери Р 2 О 5 и К 2 О. Потери азота при рыхлом хранении – около 30%.

Т а б л и ц а 5.1. Содержание сухого вещества, азота и зольных элементов в экскрементах животных, % http://www.derev-grad.ru/himicheskaya-zaschita-rastenii/udobreniya.html

При горячепрессованном, или рыхло-плотном, способе хранения (способ Кранца) навоз рыхлой укладки после разогревания до 50 - 60 0 С уплотняется. Сначала создаются аэробные условия, затем - анаэробные. Потери азота и органического вещества уменьшаются.

Существует также холодный, или плотный, способ хранения, когда создаются анаэробные условия. Навоз в буртах сразу уплотняется. Это лучший способ хранения с точки зрения сохранения в нем питательных веществ. В этом случае в буртах сохраняется постоянная температура (15 - 35 0 С). Потери азота небольшие, так как навоз все время находится в плотном и влажном состоянии. В такой навоз доступ воздуха ограничен, а свободные от воды поры заняты углекислотой, что замедляет микробиологическую деятельность.

В зависимости от степени разложения навоз на соломенной подстилке подразделяют на свежий, полуперепревший и перегной.

В свежем слаборазложившемся навозе солома незначительно изменяет цвет и прочность. В полуперепревшем она приобретает темно-коричневый цвет, становится менее прочной и легко разрывается. В этой стадии разложения навоз теряет 10 - 30% первоначальной массы и такое же количество органического вещества. Невыгодно доводить навоз до стадии перегноя, так как в этом случае около 35% органического вещества теряется.

Слаборазложившийся навоз в первый год может оказать слабое действие, а в последействии на второй и третий годы могут быть сравнительно высокие прибавки урожая. При наличии в хозяйстве разной степени разложения навоза более разложившийся навоз в районах достаточного увлажнения можно внести весной под пропашные культуры, а менее разложившийся - летом после уборки однолетних трав под озимые хлеба.

Т а б л и ц а 5.2.Химический состав свежего навоза, %

Навоз на соломенной подстилке Навоз на торфяной подстилке
Составные части КРС конский овечий свиной КРС конский
Вода 77,3 71,3 64,4 72,4 77,5 67,0
Орган. вещество 20,3 25,4 31,8 25,0 - -
Азот: общий 0,45 0,58 0,83 0,45 0,60 0,80
аммиачный 0,14 0,19 - 0,20 0,18 0,28
Фосфор 0,23 0,28 0,23 0,19 0,22 0,25
Калий 0,50 0,63 0,67 0,60 0,48 0,53

Подстилочный навоз нерационально вносить в почву в свежем виде, поскольку может произойти мобилизация подвижных форм азота микроорганизмами, а растения в начале вегетации его не получат в достаточном количестве. Кроме того, свежий навоз содержит семена сорняков. Поэтому в хозяйствах следует использовать вызревший, полуперепревший навоз. При заготовке органических удобрений в зимний период необходимо продлевать сроки их компостирования и хранения, а внесение производить в летне-осенний период. Это позволит получать высококачественный навоз, свободный от сорняков и патогенной микрофлоры.

Та б л и ц а 5.3. Влияние способов хранения подстилочного навоза на потери органического вещества и азота, %

Т а б л и ц а 5.4. Содержание элементов питания в навозе на соломенной подстилке в зависимости от степени его разложения, %

Для получения навоза хорошего качества его хранят в навозахранилищах или в полевых штабелях.

Навозохранилища. При укладке штабелей стремятся к тому, чтобы навоз различной степени разложения не был перемешан, а находился в отдельных частях навозохранилища. Укладка навоза в штабеля шириной 2 - 3 м начинается вдоль той стороны хранилища, которая прилегает к жижесборнику. Навоз укладывают небольшими участками, уплотняя каждый метровый слой навоза, а затем доводят до полной высоты (1,5 - 2 м). После того, как первый штабель будет полностью уложен, вдоль него, по мере поступления навоза, укладывают таким же образом второй штабель, затем третий и т.д. до заполнения навозохранилища. Штабеля должны плотно примыкать друг к другу. При таком порядке закладки на одной стороне навозохранилища будет находиться более разложившейся навоз, а на другой - менее разложившийся, что позволит использовать навоз нужного качества

3) Глава 4 Примения органо-минеральных комплексов для повышения плодородия почв

Органоминеральные удобрения http://biohim-bel.com/organomineralnye-udobreniya

Почва не может быть постоянно плодородной, если ее не удобрять. Для улучшения свойств почвы применяются различные вещества, как правило, минеральные или органические. Эти виды отличаются друг от друга насыщенностью питательными веществами. У каждого из этих типов есть свои достоинства и свои недостатки. Так, например, органические удобрения не всегда содержат полный комплекс веществ, необходимых для обеспечения максимально комфортных условий для растения. В таком случае органические удобрения дополняют минеральными. В качестве примера можно привести перегной или золу, которые содержат очень маленькое количество азота. Чтобы сделать почву более плодородной, эти средства используются в сочетании с минеральными азотными средствами. Кроме того, использование непроверенных органических удобрений может способствовать заражению растения какой-либо инфекцией.

Органические удобрения представляют собой вещества растительно-животного происхождения, вносимые в почву с целью улучшения агрохимических свойств почвы и увеличения урожайности. В качестве органических удобрений применяют различные виды навоза, птичий помет, компосты, зеленое удобрение. Органические удобрения оказывают разностороннее влияние на агрономические свойства:

  • в их составе в почву поступают все необходимые растениям питательные вещества. Каждая тонна сухого вещества навоза КРС содержит около 20 кг азота, 10 – фосфора, 24 – калия, 28 – кальция, 6 – магния, 4 кг серы, 25 г бора, 230 – марганца, 20 – меди, 100 – цинка и т.д. – такое удобрение называют полным.
  • в отличие от минеральных удобрений органические удобрения по содержанию питательных веществ менее концентрированные,
  • навоз и другие органические удобрения служат для растений источником СО2. При внесении в почву 30 – 40 т навоза за день в период интенсивного разложения выделяется за день 100 – 200 кг/га СО2.
  • органические удобрения – энергетический материал и источник пищи для почвенных микроорганизмов.
  • значительная часть питательных веществ в органических удобрениях становятся доступной растениям лишь по мере их минерализации. То есть органические удобрения обладают последействием, так как элементы из них используются на протяжении 3-4 лет.
  • эффективность навоза зависит от климатических условий и снижается с севера на юг и с запада на восток.
  • внесение органических удобрений довольно дорогостоящее мероприятие – имеется большие затраты на транспортировку, внесение ГСМ, амортизацию и технический уход.

Подстилочный навоз – составные части – твердые и жидкие экскременты животных и подстилка. Химический состав в значительной степени зависит от подстилки, ее вида и количества, вида животных, потребляемых кормов, способа хранения. Твердые и жидкие выделения животных неравноценны по составу и удобрительным качествам. Почти весь фосфор попадает в твердые выделения, в жидких его очень мало. Около 1/2 - 2/3 азота и почти весь калий находящийся в кормах выделяются с мочой животных. N и Р твердых выделений становятся доступными растениям лишь после их минерализации, в то время как калий находится в подвижной форме. Все питательные вещества жидких выделений представлены в легкорастворимой или легкоминеральной форме.

Подстилка – при добавлении к навозу увеличивает его выход, улучшает его качество и уменьшает в нем потери азота и жижи. В качестве подстилки используют: солому, торф, опилки и др. Во время хранения в навозе происходит при участии микроорганизмов процессы распада твердых выделений с образованием более простых. В жидких выделениях содержится мочевина СО(NН2)2, гипуровая кислота С6Н5СОNНСН2СООН и мочевую кислоту С5Н4NО3 которые могут разлагаться до свободного NН3 две формы N-белковый и аммиачный –нитратов нет.

По степени разложения различают свежий, полуперепревший, перепревший и перегной.

Перегной – богатая органическим веществом черная однородная масса 25 % от исходного.

Условия применения – навоз повышает урожай в течении нескольких лет. В засушливой и крайне засушливой зоне последействие превышает действие. Наибольший эффект от навоза достигается при внесении его под зяблевую вспашку, с немедленной заделкой в почву. Внесение навоза в зимнее время приводит к значительным потерям NО3 и NН4 и на 40 – 60 % снижается его эффективность. Нормы удобрений в севообороте следует устанавливать с учетом повышения или сохранения содержания гумуса на исходном уровне. Для этого на черноземных почвах насыщенность 1 га севооборота должна составлять 5 – 6 т, на каштановых – 3 – 4 т.

Доза навоза 10 – 20 т/га – засушливых, 20 – 40 т. – в недостаточного обеспечения влагой. Наиболее отзывчивы технические культуры – 25 – 40 т/га. под озимую пшеницу 20 – 25 т/га под предшественник.

Солома – важный источник органических удобрений. Химический состав соломы довольно широко изменяется в зависимости от почвенных и погодных условий. Она содержит около 15 % Н2О и примерно на 85 % состоит из органического вещества (целлюлюзу, пенгозаны, гемоциллюлоза и гигнин), которая является углеродистым энергетическим материалом для почвенных микроорганизмов, основой строительного материала для синтеза гумуса. В соломе имеется 1-5 % протеина и всего лишь 3-7 % золы. В состав органических веществ соломы входят все необходимые растениям питательные вещества, которые микроорганизмами почвы минерализируется в легко доступные формы в 1 г. соломы в среднем содержится 4-7 N, 1-1,4 Р2О5, 12-18 К2О, 2-3 кг Са, 0,8-1,2 кг Мg, 1-1,6 кг S, 5 г бора, 3 г Сu, 30 г Мn. 40 г Zn, 0,4 Мо и т.д.

При оценке соломы как органического удобрения большое значение имеет не только наличие тех или иных веществ, но и соотношение C:N. Установлено, что для нормального ее разложения отношение C:N должно быть 20-30:1.

Положительное действие соломы на плодородие почвы и урожай с.-х. культур возможно при наличии необходимых условий для ее разложения. Скорость разложения зависит: от наличия источников питания для микроорганизмов, их численности, видового состава, типа почвы, ее окультуренности, температуры, влажности, аэрации.

Навозная жижа представляет собой в основном перебродившую мочу животных за 4 месяца из 10 т подстилочного навоза при плотном хранении выделяется 170 л, при рыхло- плотном- 450 л и при рыхлом- 1000 л. В среднем в навозной жиже содержится N- 0,25 –0,3 %, Р2О5- 0,03-0,06 % и калия – 0,4-0,5 %- преимущественно азотно- калийное удобрение. Все питательные вещества в ней находятся в легкодоступной для растений форме, поэтому она считается быстродействующим удобрением . Коэффициент использования 60-70 % для N и К.

Птичий помет – это ценное быстродействующее органическое, концентрированное удобрение, содержащее все основные питательные вещества, необходимые растениям. Так в курином птичьем помете содержится 1,6 % N, 1,5 Р2О5, 0,8 % К2О, 2,4 СаО, 0,7 МgО, 0,4 SО2. Кроме микроэлементов, в его состав входят микроэлементы, Mn, Zn, Co, Cu. Количество питательных веществ в птичьем помете в значительной степени зависит от условий кормления птицы и содержания птицы.

Основных способ содержания птицы два: напольное и клеточное . При напольном содержании довольно широко применяется глубокая несменяемая подстилка из торфа, соломы, стержней кукурузы. При клеточном содержании птицы его разбавляют водой, чем снижается концентрация питательных веществ и значительно повышает затраты на использование в качестве удобрения. Сырой птичий помет характеризуется неблагоприятными физическими свойствами, затрудняющими механизацию использования. Обладает рядом других отрицательных свойств: распространяет на большие расстояния неприятный запах, содержит огромное количество сорняков, источником загрязнения окружающей среды и рассадником патогенной микрофлоры.

Зеленое удобрение – свежая растительная масса, запахиваемая в почву для обогащения её органическим веществом и азотом. Часто этот прием называют сидерацией, а растения, выращиваемые на удобрение, сидератами. В качестве сидератов в южно-русской степи возделывают бобовые растения – сераделла, донник, маш, эспарцет, чина, вика, горох посевной озимый и зимующий, вика озимая, горох кормовой (пелюшка), астрагал; капустные – рапс озимый и яровой, горчица, а также их смеси с бобовыми культурами. По мере снижения доли бобового компонента в смеси, снижается поступление азота, что компенсируется значительно большим количеством биологической массы.

Зеленое, как любое органическое удобрение, оказывает многостороннее положительное влияние на агрохимические свойства почвы и урожайность сельскохозяйственных культур. В зависимости от условий возделывания на каждом гектаре пашни наращивается и запахивается от 25 до 50 т/га зеленой массы сидератов. В биологической массе зеленых удобрений содержится заметно меньшее количество азота и особенно фосфора и калия по сравнению с навозом.

ВЛИЯНИЕ ОБРАБОТКИ ПОЧВЫ И МИНЕРАЛЬНЫХ УДОБРЕНИИ НА АГРОФИЗИЧЕСКИЕ СВОЙСТВА ЧЕРНОЗЕМА ТИПИЧНОГО

Г.Н. Черкасов, Е.В. Дубовик, Д.В. Дубовик, С.И. Казанцев

Аннотация. В результате исследований установлено неоднозначное влияние способа основной обработки почвы под озимую пшеницу и кукурузу и минеральных удобрений на показатели агрофизического состояния чернозема типичного. Оптимальные показатели плотности, структурного состояния получены при отвальной вспашке. Выявлено, что применение минеральных удобрений ухудшает структурно-агрегатное состояние, но способствует повышению водоустойчивости почвенных отдельностей при отвальной вспашке по отношению к нулевой и поверхностной обработкам.

Ключевые слова: структурно-агрегатное состояние, плотность почвы, водоустойчивость, обработка почвы, минеральные удобрения.

Плодородная почва наряду с достаточным содержанием питательных веществ должна иметь благоприятные физические условия для роста и развития сельскохозяйственных культур . Установлено, что структура почвы - основа благоприятных агрофизических свойств .

Черноземные почвы обладают невысокой степенью антропотолерантности , что позволяет говорить о высокой степени влияния антропогенных факторов, основным из которых является обработка почвы, а также ряд других мероприятий, которые применяются при уходе за посевами и способствуют нарушению очень ценной зернистой структуры, в результате чего она может распыляться или, наоборот, глыбиться, что допустимо до определенных пределов в почве.

Таким образом, целью данной работы являлось изучение влияния обработки почвы, минеральных удобрений и предшествующей культуры на агрофизические свойства чернозема типичного.

Исследования были проведены в 2009-2010 гг. в ООО «АгроСил» (Курская область, Суджанский район), на черноземе типичном тяжелосуглинистом. Агрохимическая характеристика участка: рНкс1- 5,3; содержание гумуса (по Тюрину) - 4,4%; подвижного фосфора (по Чирикову) - 10,9 мг/100 г; обменного калия (по Чи-рикову) - 9,5 мг/100 г; азота щелочногидролизуемого (по Корнфилду) - 13,6 мг/100 г. Возделываемые культуры: озимая пшеница сорта «Августа» и кукуруза гибрид ПР-2986.

В опыте изучались следующие способы основной обработки почвы: 1) отвальная вспашка на 20-22 см; 2) поверхностная обработка - 10-12 см; 3) нулевая обработка - прямой посев сеялкой Джон Дир. Минеральные удобрения: 1) без удобрений; 2) под озимую пшеницу N2^52^2; под кукурузу К14эР104К104.

Отбор образцов осуществлялся в третьей декаде мая, в слое 0-20 см. Плотность почвы определяли буровым методом по Н. А. Качинскому. Для изучения структурно-агрегатного состояния были отобраны ненарушенные почвенные образцы весом более 1 кг. Для выделения структурных отдельностей и агрегатов использовался метод Н. И. Саввинова по определению структурно-агрегатного состава почвы - сухое и мокрое просеивание.

Плотность почвы является одной из основных физических характеристик почвы. Увеличение плотности почвы приводит, как правило, к более плотной упаковке почвенных частиц, что в свою очередь ведет к изменению водного, воздушного и теплового режимов, что

впоследствии негативно сказывается на развитии корневой системы сельскохозяйственных растений. В то же время требования разных растений к плотности почвы неодинаковы и зависят от типа почвы, механического состава, возделываемой культуры. Так, оптимальная плотность почвы для зерновых культур составляет 1,051,30 г/см3, для кукурузы - 1,00-1,25 г/см3 .

Проведенные исследования показали, что под воздействием различных обработок почвы происходит изменение плотности (рисунок 1). Независимо от возделываемой культуры наибольшая плотность почвы была на вариантах с нулевой обработкой, несколько ниже при поверхностной обработке. Оптимальная плотность почвы отмечается на вариантах с отвальной вспашкой. Минеральные удобрения при всех способах основной обработки способствуют повышению плотности почвы.

Полученные экспериментальные данные подтверждают неоднозначность влияния способов основной обработки почвы на показатели ее структурного состояния (таблица 1). Так, на вариантах с нулевой обработкой отмечено самое низкое содержание агрономически ценных агрегатов (10,0-0,25 мм) в пахотном слое почвы, по отношению к поверхностной обработке и отвальной вспашке.

Отвальная Поверхностная Кулевая

обработка обработка

Способ основной обработки почвы

Рисунок 1 - Изменение плотности чернозема типичного в зависимости от способов обработки и удобрений под озимой пшеницей (2009 г.) и кукурузой (2010 г.)

Тем не менее коэффициент структурности, характеризующий агрегатное состояние, уменьшился в ряду: поверхностная обработка ^ отвальная вспашка ^ нулевая обработка. На структурно-агрегатное состояние чернозема оказывает влияние не только способ обработки почвы, но и возделываемая культура. При возделывании озимой пшеницы количество агрегатов агрономически ценного диапазона и коэффициент структурности были выше в среднем на 20%, чем в почве под кукурузой. Это обусловлено биологическими особенностями строения корневой системы этих культур.

Рассматривая фактор удобренности, хочется отметить, что применение удобрений привело к заметному снижению как агрономически ценной структуры, так и коэффициента структурности, что вполне закономерно, так как в первый и второй год после внесения наблюдается ухудшение строения агрегатов и агрофизических свойств почвы - возрастают плотность укладки агрегатов, заполненность порового пространства тонкодисперсной частью, уменьшается пористость и почти в два раза снижается зернистость .

Таблица 1 - Влияние способа обработки почвы и минеральных удобрений на показатели структурно-

Другим показателем структуры является ее устойчивость к внешним воздействиям, среди которых наиболее существенным является воздействие воды, поскольку почва должна сохранять свою уникальную комковато-зернистую структуру после обильных осадков и последующего подсушивания. Это качество структуры называется водоустойчивостью или водо-прочностью .

Содержание водопрочных агрегатов (>0,25 мм) является критерием для оценки и прогноза устойчивости сложения пахотного слоя во времени, его устойчивости к деградации физических свойств под влиянием природных и антропогенных факторов. Оптимальное содержание водопрочных агрегатов >0,25 мм в пахотном слое разных типов почв составляет 40-70(80)% . При изучении влияния способов основной обработки (таблица 2) было установлено, что при нулевой обработке сумма водоустойчивых агрегатов была выше, чем при поверхностной обработке и отвальной вспашке.

Таблица 2 - Изменение водоустойчивости макро-

Это напрямую связано со средневзвешенным диаметром водоустойчивых агрегатов, поскольку нулевая обработка способствует увеличению размера почвенных отдельностей, обладающих водоустойчивостью. Коэффициент структурности водоустойчивых агрегатов уменьшается в ряду: поверхностная обработка ^ нулевая обработка ^ отвальная вспашка. По оценочно-

ориентировочной шкале критерий водо-прочности агрегатов при нулевой обработке оценивается как очень хороший, а при поверхностной обработке и отвальной вспашке - как хороший.

Изучая влияние возделываемой культуры, было установлено, что в почве под кукурузой средневзвешенный диаметр, коэффициент структурности, а также сумма водоустойчивых агрегатов были выше, чем под озимой пшеницей, что связано с формированием под зерновыми культурами мощной по объему и массе корневой системы, которая способствовала формированию большей водоустойчивости под кукурузой. Критерий водопрочности повел себя иначе и был выше в почве под пшеницей, чем под кукурузой.

При внесении удобрений на варианте с отвальной вспашкой повышались коэффициент структурности, средневзвешенный диаметр и сумма водоустойчивых агрегатов. Поскольку отвальная вспашка идет с оборотом пласта и значительно глубже, чем поверхностная и тем более нулевая обработка, то и заделка минеральных удобрений происходит глубже, следовательно, на глу -бине влажность выше, что способствует более интенсивному разложению растительных остатков, за счет чего и происходит увеличение водоустойчивости почвы. На вариантах с применением поверхностной и нулевой обработки все изучаемые показатели водоустойчивости почвы при применении минеральных удобрений снизились. Критерий водопрочности почвенных агрегатов на всех вариантах опыта увеличился, что связано с тем, что данный показатель рассчитывается по результатам не только мокрого просеивания, но и сухого просеивания.

Установлено неоднозначное влияние изучаемых факторов на показатели агрофизического состояния чернозема типичного. Так, наиболее оптимальные показатели плотности, структурного состояния были выявлены при отвальной вспашке, несколько хуже при поверхностной и нулевой обработках. Показатели водоустойчивости уменьшались в ряду: нулевая обработка ^ поверхностная обработка ^ отвальная вспашка. Применение минеральных удобрений ухудшает структурно-агрегатное состояние, но способствует повышению водоустойчивости почвенных отдельностей при отвальной вспашке по отношению к нулевой и поверхностной обработкам. При возделывании озимой пшеницы показатели, характеризующие структурно-