Измерение параметров электрических цепей и компонентов. Измерение электрических параметров Измерение электрических характеристик

Объектами электрических измерений являются все электрические и магнитные величины: ток, напряжение, мощность, энергия, магнитный поток и т. д. Определение значений этих величин необходимо для оценки работы всех электротехнических устройств, чем и определяется исключительная важность измерений в электротехнике.

Электроизмерительные устройства широко применяются и для измерения неэлектрических величин (температуры, давления и т. д.), которые для этой цели преобразуются в пропорциональные им. электрические величины. Такие методы измерений известны под общим названием электрических измерений неэлектрических величин. Применение электрических методов измерений дает возможность относительно просто передавать показания приборов на дальние расстояния (телеизмерение), управлять машинами и аппаратами (автоматическое регулирование), выполнять автоматически математические операции над измеряемыми величинами, просто записывать (например, на ленту) ход контролируемых процессов и т. д. Таким образом, электрические измерения необходимы при автоматизации самых различных производственных процессов.

В Советском Союзе развитие электроприборостроения идет параллельно с развитием электрификации страны и особенно быстро после Великой Отечественной войны. Высокое качество аппаратуры и необходимая точность измерительных приборов, находящихся в эксплуатации, гарантируются государственным надзором за всеми мерами и измерительными приборами.

12.2 Меры, измерительные приборы и методы измерения

Измерение любой физической величины заключается в ее сравнении посредством физического эксперимента с принятым за единицу значением соответствующей физической величины. В общем случае для такого сопоставления измеряемой величины с мерой - вещественным воспроизведением единицы измерения - нужен прибор сравнения. Например, образцовая катушка сопротивления применяется как мера сопротивления совместно с прибором сравнения - измерительным мостом.

Измерение существенно упрощается, если есть прибор непосредственного отсчета (называемый также показывающим прибором), показывающий численное значение измеряемой величины непосредственно на шкале или циферблате. Примерами могут служить амперметр, вольтметр, ваттметр, счетчик электрической энергии. При измерении таким прибором мера (например, образцовая катушка сопротивления) не нужна, но мера была нужна при градуировании шкалы этого прибора. Как правило, у приборов сравнения выше точность и чувствительность, но измерение приборами непосредственного отсчета проще, быстрее и дешевле.

В зависимости от того, как получаются результаты измерения, различают измерения прямые, косвенные и совокупные.

Если результат измерения непосредственно дает искомое значение исследуемой величины, то такое измерение принадлежит к числу прямых, например измерение тока амперметром.

Если измеряемую величину приходится определять на основании прямых измерений других физических величин, с которыми измеряемая величина связана определенной зависимостью, то измерение относится к косвенным. Например, косвенным будет измерение, сопротивления элемента электрической цепи при измерении напряжения вольтметром и тока амперметром.

Следует иметь в виду, что при косвенном измерении возможно существенное снижение точности по сравнению с точностью при прямом измерении из-за сложения погрешностей прямых измерений величин, входящих в расчетные уравнения.

В ряде случаев конечный результат измерения выводился из результатов нескольких групп прямых или косвенных измерений отдельных величин, причем исследуемая величина зависит от измеренных величин. Такое измерение называют совокупным. Например, к совокупным измерениям относится определение температурного коэффициента электрического сопротивления материала на основании измерения сопротивления материала при различных температурах. Совокупные измерения характерны для лабораторных исследований.

В зависимости от способа применения приборов и мер принято различать следующие основные методы измерения: непосредственного измерения, нулевой и дифференциальный.

При пользовании методом непосредственного измерения (или непосредственного отсчета) измеряемая величина определяется путем

непосредственного отсчета показания измерительного прибора или непосредственного сравнения с мерой данной физической величины (измерение тока амперметром, измерение длины метром). В этом случае верхним пределом точности измерения является точность измерительного показывающего прибора, которая не может быть очень высокой.

При измерении нулевым методом образцовая (известная) величина (или эффект ее действия) регулируется и значение ее доводится до равенства со значением измеряемой величины (или эффектом ее действия). При помощи измерительного прибора в этом случае лишь добиваются равенства. Прибор должен быть высокой чувствительности, и он именуется нулевым прибором или нуль-индикатором. В качестве нулевых приборов при постоянном токе обычно применяются магнитоэлектрические гальванометры (см. § 12.7), а при переменном токе - электронные нуль-индикаторы. Точность измерения нулевым методом очень высока и в основном определяется точностью образцовых мер и чувствительностью нулевых приборов. Среди нулевых методов электрических измерений важнейшими являются мостовые и компенсационные.

Еще большая точность может быть достигнута при дифференциальных методах измерения. В этих случаях измеряемая величина уравновешивается известной величиной, но до полного равновесия измерительная цепь не доводится, а путем прямого отсчета измеряется разность измеряемой и известной величин. Дифференциальные методы применяются для сравнения двух величин, значения которых мало отличаются один от другого.

ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ
измерение электрических величин, таких, как напряжение, сопротивление, сила тока, мощность. Измерения производятся с помощью различных средств - измерительных приборов, схем и специальных устройств. Тип измерительного прибора зависит от вида и размера (диапазона значений) измеряемой величины, а также от требуемой точности измерения. В электрических измерениях используются основные единицы системы СИ: вольт (В), ом (Ом), фарада (Ф), генри (Г), ампер (А) и секунда (с).
ЭТАЛОНЫ ЕДИНИЦ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН
Электрическое измерение - это нахождение (экспериментальными методами) значения физической величины, выраженного в соответствующих единицах (например, 3 А, 4 В). Значения единиц электрических величин определяются международным соглашением в соответствии с законами физики и единицами механических величин. Поскольку "поддержание" единиц электрических величин, определяемых международными соглашениями, сопряжено с трудностями, их представляют "практическими" эталонами единиц электрических величин. Такие эталоны поддерживаются государственными метрологическими лабораториями разных стран. Например, в США юридическую ответственность за поддержание эталонов единиц электрических величин несет Национальный институт стандартов и технологии. Время от времени проводятся эксперименты по уточнению соответствия между значениями эталонов единиц электрических величин и определениями этих единиц. В 1990 государственные метрологические лаборатории промышленно развитых стран подписали соглашение о согласовании всех практических эталонов единиц электрических величин между собой и с международными определениями единиц этих величин. Электрические измерения проводятся в соответствии с государственными эталонами единиц напряжения и силы постоянного тока, сопротивления постоянному току, индуктивности и емкости. Такие эталоны представляют собой устройства, имеющие стабильные электрические характеристики, или установки, в которых на основе некоего физического явления воспроизводится электрическая величина, вычисляемая по известным значениям фундаментальных физических констант. Эталоны ватта и ватт-часа не поддерживаются, так как более целесообразно вычислять значения этих единиц по определяющим уравнениям, связывающим их с единицами других величин. См. также ЕДИНИЦЫ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН .
ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ
Электроизмерительные приборы чаще всего измеряют мгновенные значения либо электрических величин, либо неэлектрических, преобразованных в электрические. Все приборы делятся на аналоговые и цифровые. Первые обычно показывают значение измеряемой величины посредством стрелки, перемещающейся по шкале с делениями. Вторые снабжены цифровым дисплеем, который показывает измеренное значение величины в виде числа. Цифровые приборы в большинстве измерений более предпочтительны, так как они более точны, более удобны при снятии показаний и, в общем, более универсальны. Цифровые универсальные измерительные приборы ("мультиметры") и цифровые вольтметры применяются для измерения со средней и высокой точностью сопротивления постоянному току, а также напряжения и силы переменного тока. Аналоговые приборы постепенно вытесняются цифровыми, хотя они еще находят применение там, где важна низкая стоимость и не нужна высокая точность. Для самых точных измерений сопротивления и полного сопротивления (импеданса) существуют измерительные мосты и другие специализированные измерители. Для регистрации хода изменения измеряемой величины во времени применяются регистрирующие приборы - ленточные самописцы и электронные осциллографы, аналоговые и цифровые.
ЦИФРОВЫЕ ПРИБОРЫ
Во всех цифровых измерительных приборах (кроме простейших) используются усилители и другие электронные блоки для преобразования входного сигнала в сигнал напряжения, который затем преобразуется в цифровую форму аналого-цифровым преобразователем (АЦП). Число, выражающее измеренное значение, выводится на светодиодный (СИД), вакуумный люминесцентный или жидкокристаллический (ЖК) индикатор (дисплей). Прибор обычно работает под управлением встроенного микропроцессора, причем в простых приборах микропроцессор объединяется с АЦП на одной интегральной схеме. Цифровые приборы хорошо подходят для работы с подключением к внешнему компьютеру. В некоторых видах измерений такой компьютер переключает измерительные функции прибора и дает команды передачи данных для их обработки.
Аналого-цифровые преобразователи. Существуют три основных типа АЦП: интегрирующий, последовательного приближения и параллельный. Интегрирующий АЦП усредняет входной сигнал по времени. Из трех перечисленных типов это самый точный, хотя и самый "медленный". Время преобразования интегрирующего АЦП лежит в диапазоне от 0,001 до 50 с и более, погрешность составляет 0,1-0,0003%. Погрешность АЦП последовательного приближения несколько больше (0,4-0,002%), но зато время преобразования - от ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ10мкс до ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ1 мс. Параллельные АЦП - самые быстродействующие, но и наименее точные: их время преобразования порядка 0,25 нс, погрешность - от 0,4 до 2%.
Методы дискретизации. Сигнал дискретизируется по времени путем быстрого измерения его в отдельные моменты времени и удержания (сохранения) измеренных значений на время преобразования их в цифровую форму. Последовательность полученных дискретных значений может выводиться на дисплей в виде кривой, имеющей форму сигнала; возводя эти значения в квадрат и суммируя, можно вычислять среднеквадратическое значение сигнала; их можно использовать также для вычисления времени нарастания, максимального значения, среднего по времени, частотного спектра и т.д. Дискретизация по времени может производиться либо за один период сигнала ("в реальном времени"), либо (с последовательной или произвольной выборкой) за ряд повторяющихся периодов.
Цифровые вольтметры и мультиметры. Цифровые вольтметры и мультиметры измеряют квазистатическое значение величины и указывают его в цифровой форме. Вольтметры непосредственно измеряют только напряжение, обычно постоянного тока, а мультиметры могут измерять напряжение постоянного и переменного тока, силу тока, сопротивление постоянному току и иногда температуру. Эти самые распространенные контрольно-измерительные приборы общего назначения с погрешностью измерения от 0,2 до 0,001% могут иметь 3,5- или 4,5-значный цифровой дисплей. "Полуцелый" знак (разряд) - это условное указание на то, что дисплей может показывать числа, выходящие за пределы номинального числа знаков. Например, 3,5-значный (3,5-разрядный) дисплей в диапазоне 1-2 В может показывать напряжение до 1,999 В.
Измерители полных сопротивлений. Это специализированные приборы, измеряющие и показывающие емкость конденсатора, сопротивление резистора, индуктивность катушки индуктивности или полное сопротивление (импеданс) соединения конденсатора или катушки индуктивности с резистором. Имеются приборы такого типа для измерения емкости от 0,00001 пФ до 99,999 мкФ, сопротивления от 0,00001 Ом до 99,999 кОм и индуктивности от 0,0001 мГ до 99,999 Г. Измерения могут проводиться на частотах от 5 Гц до 100 МГц, хотя ни один прибор не перекрывает всего диапазона частот. На частотах, близких к 1 кГц, погрешность может составлять лишь 0,02%, но точность снижается вблизи границ диапазонов частоты и измеряемых значений. Большинство приборов могут показывать также производные величины, такие, как добротность катушки или коэффициент потерь конденсатора, вычисляемые по основным измеренным значениям.
АНАЛОГОВЫЕ ПРИБОРЫ
Для измерения напряжения, силы тока и сопротивления на постоянном токе применяются аналоговые магнитоэлектрические приборы с постоянным магнитом и многовитковой подвижной частью. Такие приборы стрелочного типа характеризуются погрешностью от 0,5 до 5%. Они просты и недороги (пример - автомобильные приборы, показывающие ток и температуру), но не применяются там, где требуется сколько-нибудь значительная точность.
Магнитоэлектрические приборы. В таких приборах используется сила взаимодействия магнитного поля с током в витках обмотки подвижной части, стремящаяся повернуть последнюю. Момент этой силы уравновешивается моментом, создаваемым противодействующей пружиной, так что каждому значению тока соответствует определенное положение стрелки на шкале. Подвижная часть имеет форму многовитковой проволочной рамки с размерами от 3ґ5 до 25ґ35 мм и делается как можно более легкой. Подвижная часть, установленная на каменных подшипниках или подвешенная на металлической ленточке, помещается между полюсами сильного постоянного магнита. Две спиральные пружинки, уравновешивающие крутящий момент, служат также токопроводами обмотки подвижной части. Магнитоэлектрический прибор реагирует на ток, проходящий по обмотке его подвижной части, а потому представляет собой амперметр или, точнее, миллиамперметр (так как верхний предел диапазона измерений не превышает примерно 50 мА). Его можно приспособить для измерения токов большей силы, присоединив параллельно обмотке подвижной части шунтирующий резистор с малым сопротивлением, чтобы в обмотку подвижной части ответвлялась лишь малая доля полного измеряемого тока. Такое устройство пригодно для токов, измеряемых многими тысячами ампер. Если последовательно с обмоткой присоединить добавочный резистор, то прибор превратится в вольтметр. Падение напряжения на таком последовательном соединении равно произведению сопротивления резистора на ток, показываемый прибором, так что его шкалу можно проградуировать в вольтах. Чтобы сделать из магнитоэлектрического миллиамперметра омметр, нужно присоединять к нему последовательно измеряемые резисторы и подавать на это последовательное соединение постоянное напряжение, например от батареи питания. Ток в такой схеме не будет пропорционален сопротивлению, а потому необходима специальная шкала, корректирующая нелинейность. Тогда можно будет производить по шкале прямой отсчет сопротивления, хотя и с не очень высокой точностью.
Гальванометры. К магнитоэлектрическим приборам относятся и гальванометры - высокочувствительные приборы для измерения крайне малых токов. В гальванометрах нет подшипников, их подвижная часть подвешена на тонкой ленточке или нити, используется более сильное магнитное поле, а стрелка заменена зеркальцем, приклеенным к нити подвеса (рис. 1). Зеркальце поворачивается вместе с подвижной частью, а угол его поворота оценивается по смещению отбрасываемого им светового зайчика на шкале, установленной на расстоянии около 1 м. Самые чувствительные гальванометры способны давать отклонение по шкале, равное 1 мм, при изменении тока всего лишь на 0,00001 мкА.

РЕГИСТРИРУЮЩИЕ ПРИБОРЫ
Регистрирующие приборы записывают "историю" изменения значения измеряемой величины. К таким приборам наиболее распространенных типов относятся ленточные самописцы, записывающие пером кривую изменения величины на диаграммной бумажной ленте, аналоговые электронные осциллографы, развертывающие кривую процесса на экране электронно-лучевой трубки, и цифровые осциллографы, запоминающие однократные или редко повторяющиеся сигналы. Основное различие между этими приборами - в скорости записи. Ленточные самописцы с их движущимися механическими частями наиболее подходят для регистрации сигналов, изменяющихся за секунды, минуты и еще медленнее. Электронные осциллографы же способны регистрировать сигналы, изменяющиеся за время от миллионных долей секунды до нескольких секунд.
ИЗМЕРИТЕЛЬНЫЕ МОСТЫ
Измерительный мост - это обычно четырехплечая электрическая цепь, составленная из резисторов, конденсаторов и катушек индуктивности, предназначенная для определения отношения параметров этих компонентов. К одной паре противоположных полюсов цепи подключается источник питания, а к другой - нуль-детектор. Измерительные мосты применяются только в тех случаях, когда требуется наивысшая точность измерения. (Для измерений со средней точностью лучше пользоваться цифровыми приборами, поскольку они проще в обращении.) Наилучшие трансформаторные измерительные мосты переменного тока характеризуются погрешностью (измерения отношения) порядка 0,0000001%. Простейший мост для измерения сопротивления носит имя своего изобретателя Ч.Уитстона.
Двойной измерительный мост постоянного тока. К резистору трудно подсоединить медные провода, не привнеся при этом сопротивления контактов порядка 0,0001 Ом и более. В случае сопротивления 1 Ом такой токоподвод вносит ошибку порядка всего лишь 0,01%, но для сопротивления 0,001 Ом ошибка будет составлять 10%. Двойной измерительный мост (мост Томсона), схема которого представлена на рис. 2, предназначен для измерения сопротивления эталонных резисторов малого номинала. Сопротивление таких четырехполюсных эталонных резисторов определяют как отношение напряжения на их потенциальных зажимах (р1, р2 резистора Rs и р3, p4 резистора Rx на рис. 2) к току через их токовые зажимы (с1, с2 и с3, с4). При такой методике сопротивление присоединительных проводов не вносит ошибки в результат измерения искомого сопротивления. Два дополнительных плеча m и n исключают влияние соединительного провода 1 между зажимами с2 и с3. Сопротивления m и n этих плеч подбирают так, чтобы выполнялось равенство M/m = N/n. Затем, изменяя сопротивление Rs, сводят разбаланс к нулю и находят Rx = Rs(N /M).


Измерительные мосты переменного тока. Наиболее распространенные измерительные мосты переменного тока рассчитаны на измерения либо на сетевой частоте 50-60 Гц, либо на звуковых частотах (обычно вблизи 1000 Гц); специализированные же измерительные мосты работают на частотах до 100 МГц. Как правило, в измерительных мостах переменного тока вместо двух плеч, точно задающих отношение напряжений, используется трансформатор. К исключениям из этого правила относится измерительный мост Максвелла - Вина.
Измерительный мост Максвелла - Вина. Такой измерительный мост позволяет сравнивать эталоны индуктивности (L) с эталонами емкости на не известной точно рабочей частоте. Эталоны емкости применяются в измерениях высокой точности, поскольку они конструктивно проще прецизионных эталонов индуктивности, более компактны, их легче экранировать, и они практически не создают внешних электромагнитных полей. Условия равновесия этого измерительного моста таковы: Lx = R2R3C1 и Rx = (R2R3) /R1 (рис. 3). Мост уравновешивается даже в случае "нечистого" источника питания (т.е. источника сигнала, содержащего гармоники основной частоты), если величина Lx не зависит от частоты.



Трансформаторный измерительный мост. Одно из преимуществ измерительных мостов переменного тока - простота задания точного отношения напряжений посредством трансформатора. В отличие от делителей напряжения, построенных из резисторов, конденсаторов или катушек индуктивности, трансформаторы в течение длительного времени сохраняют постоянным установленное отношение напряжений и редко требуют повторной калибровки. На рис. 4 представлена схема трансформаторного измерительного моста для сравнения двух однотипных полных сопротивлений. К недостаткам трансформаторного измерительного моста можно отнести то, что отношение, задаваемое трансформатором, в какой-то степени зависит от частоты сигнала. Это приводит к необходимости проектировать трансформаторные измерительные мосты лишь для ограниченных частотных диапазонов, в которых гарантируется паспортная точность.



где Т - период сигнала Y(t). Максимальное значение Yмакс - это наибольшее мгновенное значение сигнала, а среднее абсолютное значение YAA - абсолютное значение, усредненное по времени. При синусоидальной форме колебаний Yэфф = 0,707Yмакс и YAA = 0,637Yмакс.
Измерение напряжения и силы переменного тока. Почти все приборы для измерения напряжения и силы переменного тока показывают значение, которое предлагается рассматривать как эффективное значение входного сигнала. Однако в дешевых приборах зачастую на самом деле измеряется среднее абсолютное или максимальное значение сигнала, а шкала градуируется так, чтобы показание соответствовало эквивалентному эффективному значению в предположении, что входной сигнал имеет синусоидальную форму. Не следует упускать из виду, что точность таких приборов крайне низка, если сигнал несинусоидален. Приборы, способные измерять истинное эффективное значение сигналов переменного тока, могут быть основаны на одном из трех принципов: электронного умножения, дискретизации сигнала или теплового преобразования. Приборы, основанные на первых двух принципах, как правило, реагируют на напряжение, а тепловые электроизмерительные приборы - на ток. При использовании добавочных и шунтовых резисторов всеми приборами можно измерять как ток, так и напряжение.
Электронное умножение. Возведение в квадрат и усреднение по времени входного сигнала в некотором приближении осуществляются электронными схемами с усилителями и нелинейными элементами для выполнения таких математических операций, как нахождение логарифма и антилогарифма аналоговых сигналов. Приборы такого типа могут иметь погрешность порядка всего лишь 0,009%.
Дискретизация сигнала. Сигнал переменного тока преобразуется в цифровую форму с помощью быстродействующего АЦП. Дискретизированные значения сигнала возводятся в квадрат, суммируются и делятся на число дискретных значений в одном периоде сигнала. Погрешность таких приборов составляет 0,01-0,1%.
Тепловые электроизмерительные приборы. Наивысшую точность измерения эффективных значений напряжения и тока обеспечивают тепловые электроизмерительные приборы. В них используется тепловой преобразователь тока в виде небольшого откачанного стеклянного баллончика с нагревательной проволочкой (длиной 0,5-1 см), к средней части которой крохотной бусинкой прикреплен горячий спай термопары. Бусинка обеспечивает тепловой контакт и одновременно электроизоляцию. При повышении температуры, прямо связанном с эффективным значением тока в нагревательной проволочке, на выходе термопары возникает термо-ЭДС (напряжение постоянного тока). Такие преобразователи пригодны для измерения силы переменного тока с частотой от 20 Гц до 10 МГц. На рис. 5 показана принципиальная схема теплового электроизмерительного прибора с двумя подобранными по параметрам тепловыми преобразователями тока. При подаче на вход схемы напряжения переменного тока Vас на выходе термопары преобразователя ТС1 возникает напряжение постоянного тока, усилитель А создает постоянный ток в нагревательной проволочке преобразователя ТС2, при котором термопара последнего дает такое же напряжение постоянного тока, и обычный прибор постоянного тока измеряет выходной ток.



С помощью добавочного резистора описанный измеритель тока можно превратить в вольтметр. Поскольку тепловые электроизмерительные приборы непосредственно измеряют токи лишь от 2 до 500 мА, для измерения токов большей силы необходимы резисторные шунты.
Измерение мощности и энергии переменного тока. Мощность, потребляемая нагрузкой в цепи переменного тока, равна среднему по времени произведению мгновенных значений напряжения и тока нагрузки. Если напряжение и ток изменяются синусоидально (как это обычно и бывает), то мощность Р можно представить в виде P = EI cosj, где Е и I - эффективные значения напряжения и тока, а j - фазовый угол (угол сдвига) синусоид напряжения и тока. Если напряжение выражается в вольтах, а ток в амперах, то мощность будет выражена в ваттах. Множитель cosj, называемый коэффициентом мощности, характеризует степень синхронности колебаний напряжения и тока. С экономической точки зрения, самая важная электрическая величина - энергия. Энергия W определяется произведением мощности на время ее потребления. В математической форме это записывается так:

Если время (t1 - t2) измеряется в секундах, напряжение е - в вольтах, а ток i - в амперах, то энергия W будет выражена в ватт-секундах, т.е. джоулях (1 Дж = 1 ВтЧс). Если же время измеряется в часах, то энергия - в ватт-часах. На практике электроэнергию удобнее выражать в киловатт-часах (1 кВт*ч = 1000 ВтЧч).
Счетчики электроэнергии с разделением времени. В счетчиках электроэнергии с разделением времени используется весьма своеобразный, но точный метод измерения электрической мощности. Такой прибор имеет два канала. Один канал представляет собой электронный ключ, который пропускает или не пропускает входной сигнал Y (или обращенный входной сигнал -Y) на фильтр нижних частот. Состоянием ключа управляет выходной сигнал второго канала с отношением временных интервалов "закрыто"/"открыто", пропорциональным его входному сигналу. Средний сигнал на выходе фильтра равен среднему по времени произведению двух входных сигналов. Если один входной сигнал пропорционален напряжению на нагрузке, а другой - току нагрузки, то выходное напряжение пропорционально мощности, потребляемой нагрузкой. Погрешность таких счетчиков промышленного изготовления составляет 0,02% на частотах до 3 кГц (лабораторных - порядка всего лишь 0,0001% при 60 Гц). Как приборы высокой точности они применяются в качестве образцовых счетчиков для поверки рабочих средств измерения.
Дискретизирующие ваттметры и счетчики электроэнергии. Такие приборы основаны на принципе цифрового вольтметра, но имеют два входных канала, дискретизирующих параллельно сигналы тока и напряжения. Каждое дискретное значение e(k), представляющее мгновенные значения сигнала напряжения в момент дискретизации, умножается на соответствующее дискретное значение i(k) сигнала тока, полученное в тот же момент времени. Среднее по времени таких произведений есть мощность в ваттах:


Сумматор, накапливающий произведения дискретных значений с течением времени, дает полную электроэнергию в ватт-часах. Погрешность счетчиков электроэнергии может составлять всего лишь 0,01%.
Индукционные счетчики электроэнергии. Индукционный счетчик представляет собой не что иное, как маломощный электродвигатель переменного тока с двумя обмотками - токовой и обмоткой напряжения. Проводящий диск, помещенный между обмотками, вращается под действием крутящего момента, пропорционального потребляемой мощности. Этот момент уравновешивается токами, наводимыми в диске постоянным магнитом, так что частота вращения диска пропорциональна потребляемой мощности. Число оборотов диска за то или иное время пропорционально полной электроэнергии, полученной за это время потребителем. Число оборотов диска считает механический счетчик, который показывает электроэнергию в киловатт-часах. Приборы такого типа широко применяются в качестве бытовых счетчиков электроэнергии. Их погрешность, как правило, составляет 0,5%; они отличаются большим сроком службы при любых допустимых уровнях тока.
- измерения электрических величин: электрического напряжения, электрического сопротивления, силы тока, частоты и фазы переменного тока, мощности тока, электрической энергии, электрического заряда, индуктивности, электрической ёмкости и др.… … Большая советская энциклопедия

электрические измерения - — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN electrical measurementelectricity metering … Справочник технического переводчика

Э. измерительными аппаратами называют приборы и приспособления, служащие для измерения Э., а также и магнитных величин. Большая часть измерений сводится к определению силы тока, напряжения (разности потенциалов) и количества электричества.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона - совокупности соединенных определенным образом элементов и устройств, образующих путь для прохождения электрического тока. Теория цепей раздел теоретической электротехники, в котором рассматриваются математические методы вычисления электрических… … Энциклопедия Кольера

измерения аэродинамические Энциклопедия «Авиация»

измерения аэродинамические - Рис. 1. измерения аэродинамические — процесс нахождения опытным путём значений физических величин в аэродинамическом эксперименте с помощью соответствующих технических средств. Различают 2 типа И. а.: статические и динамические. При… … Энциклопедия «Авиация»

Электрические - 4. Электрические нормы проектирования радиотрансляционных сетей. М., Связьиздат, 1961. 80 с.

Измерением называется процесс нахождения опытным путем значения физической величины с помощью специальных технических средств. Электроизмерительные приборы широко используются при наблюдении за работой электроустановок, при контроле за их состоянием и режимами работы, при учете расхода и качества электрической энергии, при ремонте и наладке электротехнического оборудования.

Электроизмерительными приборами называют средства электрических измерений, предназначенные для выработки сигналов, функционально связанных с измеряемыми физическими величинами в форме, доступной для восприятия наблюдателем или автоматическим устройством.

Электроизмерительные приборы делятся:

  • по виду получаемой информации на приборы для измерения электрических (ток, напряжение, мощность и др.) и неэлектрических (температура, давление и др.) величин;
  • по методу измерения - на приборы непосредственной оценки (амперметр, вольтметр и др.) и приборы сравнения (измерительные мосты и компенсаторы);
  • по способу представления измеряемой информации - на аналоговые и дискретные (цифровые).

Наибольшее распространение получили аналоговые приборы непосредственной оценки, которые классифицируются по признакам: род тока (постоянный или переменный), род измеряемой величины (ток, напряжение, мощность , сдвиг фаз), принцип действия (магнитоэлектрические, электромагнитные, электро- и ферродинамические), класс точности и условия эксплуатации.

Для расширения пределов измерения электрических приборов на постоянном токе используются шунты (для тока) и добавочные сопротивления Rd (для напряжения); на переменном токе трансформаторы тока (тт) и напряжения (тн).

Используемые приборы для измерения электрических величин.

Измерение напряжения осуществляется вольтметром (V), подключаемым непосредственно на зажимы исследуемого участка электрической цепи.

Измерение тока осуществляется амперметром (А), включаемым последовательно с элементами исследуемой цепи.

Измерение мощности (W) и сдвига фаз () в цепях переменного тока производится с помощью ваттметра и фазометра. Эти приборы имеют две обмотки: неподвижную токовую, которая включается последовательно, и подвижную обмотку напряжения, включаемую параллельно.

Для измерения частоты переменного тока (f) применяются частотометры.

Для измерения и учета электрической энергии - счетчики электрической энергии, подключаемые к измерительной цепи аналогично ваттметрам.

Основными характеристиками электроизмерительных приборов являются: погрешность, вариации показаний, чувствительность, потребляемая мощность, время установления показаний и надежность.

Основными частями электромеханических приборов являются электроизмерительная цепь и измерительный механизм.

Измерительная цепь прибора является преобразователем и состоит из различных соединений активного и реактивного сопротивлений и других элементов в зависимости от характера преобразования. Измерительный механизм преобразует электромагнитную энергию в механическую, необходимую для углового перемещения его подвижной части относительно неподвижной. Угловые перемещения стрелки а функционально связано с крутящим и противодействующим моментом прибора уравнением преобразования вида:

к - конструктивная постоянная прибора;

Электрическая величина, под действием которой стрелка прибора отклоняется на угол

На основании данного уравнения можно утверждать, что если:

  1. входная величина Х в первой степени (п=1), то а будет менять знак при изменении полярности, и на частотах, отличных от 0, прибор работать не может;
  2. n=2, то прибор может работать как на постоянном, так и на переменном токе;
  3. в уравнение входит не одна величина, то в качестве входной можно выбирать любую, оставляя остальные постоянными;
  4. две величины являются входными, то прибор можно использовать в качестве множительного преобразователя (ваттметр, счетчик) или делительного (фазометр, частотометр);
  5. при двух или более входных величинах на несинусоидальном токе прибор обладает свойством избирательности в том смысле, что отклонение подвижной части определяется величиной только одной частоты.

Общими элементами являются: отсчетное устройство, подвижная часть измерительного механизма, устройства для создания вращающего, противодействующего и успокаивающего моментов.

Отсчетное устройство имеет шкалу и указатель. Интервал между соседними метками шкалы называют делением.

Цена деления прибора представляет собой значение измеряемой величины, вызывающее отклонение стрелки прибора на одно деление и определяется зависимостями:

Шкалы могут быть равномерными и неравномерными. Область между начальным и конечным значениями шкалы называют диапазоном показаний прибора.

Показания электроизмерительных приборов несколько отличаются от действительных значений измеряемых величин. Это вызвано трением в измерительной части механизма, влиянием внешних магнитных и электрических полей, изменением температуры окружающей среды и т.д. Разность между измеренным Аи и действительным Ад значениями контролируемой величины называется абсолютной погрешностью измерений:

Так как абсолютная погрешность не дает представления о степени точности измерений, то используют относительную погрешность:

Поскольку действительное значение измеряемой величины при измерении неизвестно, для определения и можно воспользоваться классом точности прибора.

Амперметры, вольтметры и ваттметры подразделяются на 8 классов точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Цифра, обозначающая класс точности, определяет наибольшую положительную или отрицательную основную приведенную погрешность, которую имеет данный прибор. Например, для класса точности 0,5 приведенная погрешность составит ±0,5%.

Технические характеристики амперметров
Наименование параметра Амперметры Э47 Вольтметры Э47
Система электромагнитная электромагнитная
Способ вывода информации аналоговый аналоговый
Диапазон измерений 0...3000 А 0...600 В
Способ установки на панель щита на панель щита
Способ включения <50 А- непосредственный, >100 А-через трансформатор тока с вторичным током 5 А непосредственный
Класс точности 1,5 1,5
Предел допускаемой основной погрешности приборов, % ±1,5 ±1,5
Номинальное рабочее напряжение, не более 400 В 600 В
Допустимая длительная перегрузка (не более 2 ч) 120% от конечного значения диапазона измерений
Средняя наработка до отказа, не менее, ч 65000 65000
Средний срок службы, не менее, лет 8 8
Температура окружающего воздуха, °С 20±5 20±5
Частота измеряемой величины, Гц 45...65 45...65
Положение монтажной плоскости вертикальное вертикальное
Габариты, мм 72x72x73,5 96x96x73,5 72x72x73,5 96x96x73,5

Электроизмерительные приборы (амперметры и вольтметры) серии Э47

Применяются в низковольтных комплектных устройствах в распределительных электрических сетях жилых, коммерческих и производственных объектов.

Амперметры Э47 - аналоговые электромагнитные электроизмерительные приборы - предназначены для измерения силы тока в электрических цепях переменного тока.

Вольтметры Э47 - аналоговые электромагнитные электроизмерительные приборы - предназначены для измерения напряжения в электрических цепях переменного тока.

Широкий диапазон измерений: амперметры до 3000 А, вольтметры до 600 В. Класс точности 1.5.

Амперметры, рассчитанные на измерение токов выше 50 А подключают к измеряемой цепи через трансформатор тока с номинальным вторичным рабочим током 5 А.

Принцип действия амперметров и вольтметров серии Э47

Амперметры и вольтметры Э47 относятся к приборам с электромагнитной системой. В составе имеют круглую катушку с помещенными внутрь подвижным и неподвижным сердечниками. При протекании тока через витки катушки, создается магнитное поле, намагничивающее оба сердечника. Вследствие чего.

одноименные полюса сердечников отталкиваются, и подвижный сердечник поворачивает ось со стрелкой. Для защиты от негативного влияния внешних магнитных полей, катушка и сердечники защищены металлическим экраном.

Принцип действия приборов магнитоэлектрической системы основан на взаимодействии поля постоянного магнита и проводников с током, а электромагнитной - на втягивании стального сердечника в неподвижную катушку при существовании в ней тока. Электродинамическая система имеет две катушки. Одна из катушек, подвижная, укрепляется на оси и располагается внутри неподвижной катушки.

Принцип действия прибора, возможность его работы в тех или иных условиях, возможные предельные погрешности прибора могут быть установлены по условным обозначениям, нанесенным на циферблат прибора.

Например: (А) - амперметр; (~) - переменный ток в пределах от 0 до 50А; () - вертикального положения, класс точности 1,0 и т.д.

Измерительные трансформаторы тока и напряжения имеют ферромагнитные магнитопроводы, на которых располагаются первичные и вторичные обмотки. Число витков вторичной обмотки всегда больше первичной.

Зажимы первичной обмотки трансформатора тока обозначают буквами Л1 и Л2 (линия), а вторичной - И1 и И2 (измерение). По правилам техники безопасности один из зажимов вторичной обмотки трансформатора тока, так же, как и трансформатора напряжения, заземляют, что делается на случай повреждения изоляции. Первичную обмотку трансформатора тока включают последовательно с объектом, у которого проводят измерения. Сопротивление первичной обмотки трансформатора тока мало по сравнению с сопротивлением потребителя. Вторичная обмотка замыкается на амперметр и токовые цепи приборов (ваттметр, счетчик и т. д.). Токовые обмотки ваттметров, счетчиков и реле рассчитывают на 5А, вольтметры, цепи напряжения ваттметров, счетчиков и обмоток реле - на 100 В.

Сопротивления амперметра и токовых цепей ваттметра невелики, поэтому трансформатор тока работает фактически в режиме короткого замыкания. Номинальный ток вторичной обмотки равен 5А. Коэффициент трансформации трансформатора тока равен отношению первичного тока к номинальному току вторичной обмотки, а у трансформатора напряжения - отношению первичного напряжения ко вторичному номинальному.

Сопротивление вольтметра и цепей напряжения измерительных приборов всегда велико и составляет не менее тысячи Ом. В связи с этим трансформатор напряжения работает в режиме холостого хода.

Показания приборов, включенных через трансформаторы тока и напряжения, необходимо умножать на коэффициент трансформации.

Трансформаторы тока ТТИ

Трансформаторы тока ТТИ предназначены: для применения в схемах учета электроэнергии при расчетах с потребителями; для применения в схемах коммерческого учета электроэнергии; для передачи сигнала измерительной информации измерительным приборам или устройствам защиты и управления. Корпус трансформатора выполнен неразборным и опломбирован наклейкой, что делает невозможным доступ ко вторичной обмотке. Клеммные зажимы вторичной обмотки закрываются прозрачной крышкой, что обеспечивает безопасность при эксплуатации. Кроме того, крышку можно опломбировать. Это особенно важно в схемах учета электроэнергии, так как позволяет исключить несанкционированный доступ к клеммным зажимам вторичной обмотки.

Встроенная медная луженая шина у модификации ТТИ-А - дает возможность подключения как медных, так и алюминиевых проводников.

Номинальное напряжениe - 660 В; номинальная частота сети - 50 Гц; класс точности трансформатора 0,5 и 0,5S; номинальный вторичный рабочий ток - 5А.

Технические характеристики трансформаторов ТТИ
Модификации трансформаторов Номинальный первичный ток трансформатора, А
ТТИ-А 5; 10; 15; 20; 25; 30; 40; 50; 60; 75; 80; 100; 120; 125; 150; 200; 250; 300; 400; 500; 600; 800; 1000
ТТИ-30 150; 200; 250; 300
ТТИ-40 300; 400; 500; 600
ТТИ-60 600; 750; 800; 1000
ТТИ-85 750; 800; 1000; 1200; 1500
ТТИ-100 1500; 1600; 2000; 2500; 3000
ТТИ-125 1500; 2000; 2500; 3000; 4000; 5000

Электронные аналоговые приборы представляют собой сочетание различных электронных преобразователей и магнитоэлектрического прибора и служат для измерения электрических величин. Они обладают высоким входным сопротивлением (малым потреблением энергии от объекта измерения) и высокой чувствительностью. Используются для измерения в цепях повышенной и высокой частоты.

Принцип действия цифровых измерительных приборов основан на преобразовании измеряемого непрерывного сигнала в электрический код, отображаемый в цифровой форме. Достоинствами являются малые погрешности измерения (0.1-0,01 %) в широком диапазоне измеряемых сигналов и высокое быстродействие от 2 до 500 измерений в секунду. Для подавления индустриальных помех они снабжены специальными фильтрами. Полярность выбирается автоматически и указывается на отсчетном устройстве. Содержат выход на цифропечатающее устройство. Используются как для измерения напряжения и тока, так и пассивных параметров - сопротивление, индуктивность, емкость. Позволяют измерять частоту и ее отклонение, интервал времени и число импульсов.

К электрическим измерениям относятся измерения таких физических величин, как напряжение, сопротивление, сила тока, мощность. Измерения производятся с помощью различных средств – измерительных приборов, схем и специальных устройств. Тип измерительного прибора зависит от вида и размера (диапазона значений) измеряемой величины, а также от требуемой точности измерения. В электрических измерениях используются основные единицы системы СИ: вольт (В), ом (Ом), фарада (Ф), генри (Г), ампер (А) и секунда (с).

Электрическое измерение – это нахождение (экспериментальными методами) значения физической величины, выраженного в соответствующих единицах.

Значения единиц электрических величин определяются международным соглашением в соответствии с законами физики. Поскольку «поддержание» единиц электрических величин, определяемых международными соглашениями, сопряжено с трудностями, их представляют «практическими» эталонами единиц электрических величин.

Эталоны поддерживаются государственными метрологическими лабораториями разных стран. Время от времени проводятся эксперименты по уточнению соответствия между значениями эталонов единиц электрических величин и определениями этих единиц. В 1990 государственные метрологические лаборатории промышленно развитых стран подписали соглашение о согласовании всех практических эталонов единиц электрических величин между собой и с международными определениями единиц этих величин.

Электрические измерения проводятся в соответствии с государственными эталонами единиц напряжения и силы постоянного тока, сопротивления постоянному току, индуктивности и емкости. Такие эталоны представляют собой устройства, имеющие стабильные электрические характеристики, или установки, в которых на основе некоего физического явления воспроизводится электрическая величина, вычисляемая по известным значениям фундаментальных физических констант. Эталоны ватта и ватт-часа не поддерживаются, так как более целесообразно вычислять значения этих единиц по определяющим уравнениям, связывающим их с единицами других величин.

Электроизмерительные приборы чаще всего измеряют мгновенные значения либо электрических величин, либо неэлектрических, преобразованных в электрические. Все приборы делятся на аналоговые и цифровые. Первые обычно показывают значение измеряемой величины посредством стрелки, перемещающейся по шкале с делениями. Вторые снабжены цифровым дисплеем, который показывает измеренное значение величины в виде числа.

Цифровые приборы в большинстве измерений более предпочтительны, так как они более удобны при снятии показаний и, в общем, более универсальны. Цифровые универсальные измерительные приборы («мультиметры») и цифровые вольтметры применяются для измерения со средней и высокой точностью сопротивления постоянному току, а также напряжения и силы переменного тока.

Аналоговые приборы постепенно вытесняются цифровыми, хотя они еще находят применение там, где важна низкая стоимость и не нужна высокая точность. Для самых точных измерений сопротивления и полного сопротивления (импеданса) существуют измерительные мосты и другие специализированные измерители. Для регистрации хода изменения измеряемой величины во времени применяются регистрирующие приборы – ленточные самописцы и электронные осциллографы, аналоговые и цифровые.

Измерения электрических величин являются одними из самых распространённых видов измерений. Благодаря созданию электротехнических устройств, преобразующих различные неэлектрические величины в электрические, методы и средства электрические приборы используются при измерениях практически всех физических величин.

Область применения электроизмерительных приборов:

· научные исследования в физике, химии, биологии и др.;

· технологические процессы в энергетике, металлургии, химической промышленности и др.;

· транспорт;

· разведка и добыча полезных ископаемых;

· метеорологические и океанологические работы;

· медицинская диагностика;

· изготовление и эксплуатация радио и телевизионных устройств, самолётов и космических аппаратов и т.п.

Большое разнообразие электрических величин, широкие диапазоны их значений, требования высокой точности измерений, разнообразие условий и областей применения электроизмерительных приборов обусловили многообразие методов и средств электрических измерений.

Измерение "активных" электрических величин (силы тока, электрического напряжения и др.), характеризующих энергетическое состояние объекта измерений, основывается на непосредственном воздействии этих величин на средство чувствительный элемент и, как правило, сопровождается потреблением некоторого количества электрической энергии от объекта измерений.

Измерение "пассивных" электрических величин (электрического сопротивления, его комплексных составляющих, индуктивности, тангенса угла диэлектрических потерь и др.), характеризующих электрические свойства объекта измерений, требует подпитки объекта измерений от постороннего источника электрической энергии и измерения параметров ответного сигнала.
Методы и средства электрических измерений в цепях постоянного и переменного тока существенно различаются. В цепях переменного тока они зависят от частоты и характера изменения величин, а также от того, какие характеристики переменных электрических величин (мгновенные, действующие, максимальные, средние) измеряются.

Для электрических измерений в цепях постоянного тока наиболее широко применяют измерительные магнитоэлектрические приборы и цифровые измерительные устройства. Для электрических измерений в цепях переменного тока - электромагнитные приборы, электродинамические приборы, индукционные приборы, электростатические приборы, выпрямительные электроизмерительные приборы, осциллографы, цифровые измерительные приборы. Некоторые из перечисленных приборов применяют для электрических измерений как в цепях переменного, так и постоянного тока.

Значения измеряемых электрических величин заключаются примерно в пределах: силы тока - от до А, напряжения - от до В, сопротивления - от до Ом, мощности - от Вт до десятков ГВт, частоты переменного тока - от до Гц. Диапазоны измеряемых значений электрических величин имеют непрерывную тенденцию к расширению. Измерения на высоких и сверхвысоких частотах, измерение малых токов и больших сопротивлений, высоких напряжений и характеристик электрических величин в мощных энергетических установках выделились в разделы, развивающие специфические методы и средства электрических измерений.

Расширение диапазонов измерений электрических величин связано с развитием техники электрических измерительных преобразователей, в частности с развитием техники усиления и ослабления электрических токов и напряжений. К специфическим проблемам электрических измерений сверхмалых и сверхбольших значений электрических величин относятся борьба с искажениями, сопровождающими процессы усиления и ослабления электрических сигналов, и разработка методов выделения полезного сигнала на фоне помех.

Пределы допускаемых погрешностей электрических измерений колеблются приблизительно от единиц до %. Для сравнительно грубых измерений пользуются измерительными приборами прямого действия. Для более точных измерений используются методы, реализуемые с помощью мостовых и компенсационных электрических цепей.

Применение методов электрических измерений для измерения неэлектрических величин основывается либо на известной связи между неэлектрическими и электрическими величинами, либо на применении измерительных преобразователей (датчиков).

Для обеспечения совместной работы датчиков с вторичными измерительными приборами, передачи электрических выходных сигналов датчиков на расстояние, повышения помехоустойчивости передаваемых сигналов применяют разнообразные электрические промежуточные измерительные преобразователи, выполняющие одновременно, как правило, функции усиления (реже, ослабления) электрических сигналов, а также нелинейные преобразования с целью компенсации нелинейности датчиков.

На вход промежуточных измерительных преобразователей могут быть поданы любые электрические сигналы (величины), в качестве же выходных сигналов наиболее часто используют электрические унифицированные сигналы постоянного, синусоидального или импульсного тока (напряжения). Для выходных сигналов переменного тока используется амплитудная, частотная или фазовая модуляция. Всё более широкое распространение в качестве промежуточных измерительных преобразователей получают цифровые преобразователи.

Комплексная автоматизация научных экспериментов и технологических процессов привела к созданию комплексных средств измерительных установок, измерительно-информационных систем, а также к развитию техники телеметрии, радиотелемеханики.

Современное развитие электрических измерений характеризуется использованием новых физических эффектов. Например, в настоящее время для создания высокочувствительных и высокоточных электроизмерительных приборов применяются квантовые эффекты Джозефсона, Холла и др. В технику измерений широко внедряются достижения электроники, используется микроминиатюризация средств измерений, сопряжение их с вычислительной техникой, автоматизация процессов электрических измерений, а также унификация метрологических и других требований к ним.

Измерения электрических параметров кабельных линий связи

1. Измерения электрических параметров кабельных линий связи

1.1 Общие положения

Электрические свойства кабельных линий связи характеризуются параметрами передачи и параметрами влияния.

Параметры передачи оценивают процессы распространения электромагнитной энергии вдоль кабельной цепи. Параметры влияния характеризуют явления перехода энергии с одной цепи на другую и степень защищенности от взаимных и внешних помех.

К параметрам передачи относятся первичные параметры:

R - сопротивление,

L - индуктивность,

С - ёмкость,

G - проводимость изоляции и вторичные параметры,

Z - волновое сопротивление,

a - коэффициент затухания,

β - коэффициент фазы.

К параметрам влияния относятся первичные параметры;

К - электрическая связь,

М - магнитная связь и вторичные параметры,

Во-переходное затухание на ближнем конце,

Bℓ - переходное затухание на дальним конце.

В области низких частот качество и дальность связи определяются в основном параметрами передачи, а при высокочастотном использовании цепей важнейшими характеристиками являются параметры влияния.

При эксплуатации кабельных линий связи проводятся измерения их электрических параметров, которые делятся на профилактические, контрольные и аварийные. Профилактические измерения осуществляются через определенные промежутки времени для оценки состояния линий связи и приведение их параметров к нормам. Контрольные измерения проводят после технического обслуживания и других видов работ для оценки качества их выполнения. Аварийные измерения осуществляются в целях определения характера и места повреждения линии связи.

1.2 Измерение сопротивления цепи

Различают сопротивление цепи (Rц) постоянному току и сопротивление цепи переменному току. Сопротивление 1 км провода постоянному току зависит от материала провода (удельного сопротивления - p), диаметра провода и температуры. Сопротивление любого провода при увеличение температуры увеличивается, а при увеличении диаметра уменьшается.

Для любой температуры сопротивление от 20 °С, сопротивление может быть подсчитано по формуле:

Rt =Rt=20 [1+а (t -20)] Ом/км,

где Rt - сопротивление при данной температуре,

a - температурный коэффициент сопротивления.

Для двух проводных цепей полученную величину сопротивления необходимо умножить на два.

Сопротивление 1 км провода переменному току зависит, кроме указанных факторов, еще и от частоты тока. Сопротивление переменному току всегда больше, чем постоянному, вследствие поверхностного эффекта.

Зависимость сопротивления провода переменному току от частоты определяется формулой:

R=K1 × Rt Ом/км,

где K1 - коэффициент, учитывающий частоту тока (с увеличением частоты тока K1 увеличивается)

Сопротивление цепи кабеля и отдельных проводов измеряется на смонтированных усилительных участках. Для измерения сопротивления используется схема моста постоянного тока с постоянным отношением балансных плеч. Данную схему обеспечивают измерительные приборы ПКП-3М, ПКП-4М, П-324. Схемы измерения с использованием указанных приборов изображены на рис. 1 и рис. 2.

Рис. 1. Схема измерения сопротивления цепи прибором ПКП

Рис. 2. Схема измерения сопротивления цепи прибором П-324

Измеренное сопротивление пересчитывается на 1 км цепи и сравнивается с нормами на данный кабель. Нормы сопротивлений на некоторые типы легких и симметричных кабелей приведены в табл. 1.

Таблица 1

Пара-метрКабельП-274 П-274МП-270ТГ ТБТЗБ ТЗГП-296МКБ МКГМКСБ МКСГСопротивление цепи постоянному току (¦ = 800Гц), при +20 °С, Ом/км115÷12536,0d=0,4 £148d=0,8 £56,155,5d=1,2 £31,9d=0,9 £28,5d=0,75 £95d=0,9 £28,5d=1,4 £23,8d=1,2 £15,85d=0,6 £65,8d=1,0 £23,5d=0,7 £48d=1,2 £16,4d=1,4 £11,9

Сопротивление постоянному току d равно, а активное сопротивление легких полевых кабелей связи (П-274, П-274М, П-275) не зависят от способов прокладки линий и условий погоды («сухо», «сыро») и имеет лишь температурную зависимость, возрастая с увеличением температуры окружающей среды (воздуха, почвы и т.д.).

Если в результате сравнения измеренное значение сопротивления больше нормы, то это может означать наличие плохого контакта в сростках кабеля или в соединительных полумуфтах.

1.3 Измерение ёмкости

Емкость (Сх) является одним из важнейших первичных параметров передачи цепей кабельных линий связи. По ее величине можно судить о состоянии кабеля, определять характер и место его повреждения.

По фактической природе ёмкость кабеля аналогична ёмкости конденсатора, где роль обкладок выполняют поверхности проводов, а диэлектриком служит расположенный между ними изоляционный материал (бумага, стирофлекс и т.д.).

Ёмкость цепей кабельных линий связи зависит от длины линии связи, конструкции кабеля, изоляционных материалов, типа скрутки.

На величину ёмкости цепей симметричных кабелей оказывают влияние соседние жилы, оболочки кабеля, так как все они находятся в непосредственной близости друг от друга.

Измерения ёмкости кабеля производят измерительными приборами типа ПКП-3М, ПКП-4М, П-324. При измерении прибора ПКП используется баллистический метод измерения, а прибор П-324 измеряет по схеме моста переменного тока с переменным отношением балансных плеч.

На кабельных линиях связи могут производиться:

измерения ёмкости пары жил;

измерения ёмкости жилы (относительно земли).

1.3.1 Измерение ёмкости пары жил прибором П-324

Измерение ёмкости пары жил производится по схеме, приведенной на рис. 3.

Рис. 3. Схема измерения ёмкости пары жил

Одно из балансных плеч представляет собой набор резисторов nR, втрое - магазин сопротивлений - Rмс. Два других плеча - эталонная ёмкость Со и измеряемая Сх.

Для обеспечения равенства углов потерь плеч и используются потенциометры БАЛАНС Сх ГРУБО и БАЛАНС Сх ПЛАВНО. Баланс моста обеспечивается с помощью магазина сопротивлений Rмс. При равенстве углов потерь плеч и баланса моста справедливо следующее равенство:

Поскольку Со и R постоянны для данной схемы измерения, то измеряемая ёмкость обратно пропорциональна сопротивлению магазина. Поэтому магазин сопротивлений градуируется непосредственно в единицах ёмкости (нФ), а результат измерения определяется из выражения:

Сх = n Смс.

1.3.2 Измерение ёмкости жилы относительно земли

Измерение ёмкости жилы относительно земли проводится по схеме рис. 4.

Рис. 4. Схема измерения ёмкости жилы относительно земли

Нормы среднего значения рабочей ёмкости пары жил для некоторых типов кабельных линий связи приведены в табл. 2.

Таблица 2

Пара-метрКабельП-274 П-274МП-270ТГ ТБТЗБ ТЗГП-296МКБ МКГМКСБ МКСГСреднее значение рабочей ёмкости, нФ/км32,6 ÷ 38,340,45d =0,4 d =0,5 С=50d =0,8 С=3836,0d =1,2 С=27 d =1,4 С=3624,0÷25d =0,9 С=33,5d =0,6 С=40d =1,0 С=34d =0,7 С=41d =1,2 С=34,5d =1,4 С=35,5

Примечание:

. Ёмкость легких полевых кабелей связи в зависимости от способа прокладки, состояния погоды, а также температуры окружающей среды колеблется. Наибольшее влияние оказывает увлажнение или покрытие кабельной оболочки полупроводящими наслоениями (почва, атмосферные осадки, сажа и т.д.) Ёмкость кабеля П-274 заметно изменяется с ростом температуры и частоты (с ростом температуры ёмкость увеличивается, а с увеличением частоты уменьшается).

Рабочая ёмкость кабеля МКСБ, МКСГ зависит от числа четвёрок (одно-, четырёх- и семичетвёрочные) и количества сигнальных жил.

1.4 Измерение сопротивления изоляции

При оценке качества изоляции цепи обычно пользуются понятием «сопротивление изоляции» (Rиз). Сопротивление изоляции есть величина, обратная проводимости изоляции.

Проводимость изоляции цепи зависит от материала и состояния изоляции, атмосферных условий и частоты тока. Проводимость изоляции значительно увеличивается при загрязнении изоляции, при наличии в ней трещин, при нарушении целости слоя изоляционного покрова кабеля. В сырую погоду проводимость изоляции больше, чем в сухую. С увеличением частоты тока проводимость изоляции увеличивается.

Измерение сопротивления изоляции может производиться приборами ПКП-3, ПКП-4, П-324 при профилактических и контрольных испытаниях. Сопротивление изоляции измеряется между жилами и между жилой и землей.

Для измерения сопротивления изоляции Rиз управляющая обмотка МУ включается последовательно с источником напряжения и измеряемым сопротивлением изоляции. Чем меньше величина измеряемого Rиз, тем больше ток в управляющей обмотке МУ, а следовательно, и больше ЭДС в выходной обмотке МУ. Усиленный сигнал детектируется и фиксируется прибором ИП. Шкала прибора градуируется непосредственно в мегомах, поэтому отсчёт измеряемой величины Rиз. производится по верхней или средней шкале с учётом положения переключателя ПРЕДЕЛ Rмом.

При измерении прибором ПКП сопротивления изоляции используется схема омметра, которая состоит из последовательно соединенных микроамперметра и источника питания напряжением 220В. Шкала микроамперметра проградуирована от 3 до 1000 Мом.

Нормы сопротивления изоляции для некоторых типов кабелей связи приведены в табл. 3.

Таблица 3

ПараметрКабельП-274 П-274МП-270ТГ ТБТЗБ ТЗГП-296МКБ МКГМКСБ МКСГСопротивление изоляции одиночных жил относительно других жил, при t=20 °С не менее, МОм/км100÷1000 250÷2500500050001000050001000010000

Сопротивление изоляции лёгких полевых кабелей связи в большей степени зависит от способа прокладки условий эксплуатации, а также температуры окружающей среды.

1.5 Измерение вторичных параметров передачи

1.5.1 Волновое сопротивление

Волновое сопротивление (Zc) - это сопротивление, которое встречает электромагнитная волна при распространении вдоль однородной цепи без отражения. Оно свойственно данному типу кабеля и зависит лишь от первичных параметров и частоты передаваемого тока. Величина волнового сопротивления характеризует цепь, так как показывает соотношение между напряжением (U) и током (I) в любой её точке для однородной цепи величина постоянная, не зависящая от ее длины.

Так как все первичные параметры, за исключением ёмкости, зависят от частоты тока, то при увеличении частоты тока волновое сопротивление уменьшается.

Измерение и оценка величины волнового сопротивления может производиться с помощью прибора Р5-5. С этой целью работы производятся с обоих концов кабельной линии связи. На одном конце измеряемая цепь нарушается активным сопротивлением, в качестве которого рекомендуется использовать высокочастотные мастичные сопротивления СП, СПО или магазин непроволочных сопротивлений, на другом подключается прибор Р5-5. Регулируя сопротивления на дальнем конце цепи и увеличивая усиление прибора на ближнем конце цепи, добиваются минимального отражения от дальнего конца линии по прибору Р5-5. Величина сопротивления, подобранная на дальнем конце цепи в этом случае будет соответствовать волновому сопротивлению цепи.

Нормы на величину среднего значения волнового сопротивления приведены в табл. 4.

Таблица 4

Час-то-та, кГцКабельП-274П-274МП-270ТГ, ТБТЗГ, ТЗСП-296МКБ МКГМКСБ МКСГсухов водесухов воде0,8720495823585798 ÷1085368 ÷64843548749010,0230155258181146231 ÷308147 ÷200160190,519616,0205135222158139133 ÷17415218218660131142 ÷147130174174,6120129142 ÷146171168,4200128169,2167,3300126168,2166,3

1.5.2 Рабочее затухание

При распространении электрической энергии по проводам амплитуды тока и напряжения уменьшаются или, как говорят, претерпевают затухание. Уменьшение энергии на длине цепи 1 км учитывается через коэффициент затухания, который иначе называют километрическим затуханием. Коэффициент затухания обозначается буквой a и измеряется в неперах на 1 км. Коэффициент затухания зависит от первичных параметров цепи и обусловлен двумя видами потерь:

затухание за счет потерь энергии на нагрев металла провода;

затухание за счет потерь несовершенства изоляции и за счет диэлектрических потерь.

В нижней области частот доминируют потери в металле, а выше начинают сказываться потери в диэлектрике.

Так как первичные параметры зависят от частоты, то и a зависит от частоты: с увеличением частоты тока a увеличивается. Увеличение затухания объясняется тем, что с возрастанием частоты тока увеличиваются активное сопротивление и проводимость изоляции.

Зная коэффициент затухания цепи (a) и длину цепи (ℓ), то можно определить собственное затухание всей цепи (а):

а=a× ℓ, Нп

Для четырехполосников, образующих канал связи, обычно не удается полностью обеспечить условия согласованного включения. Поэтому для учета несогласованности как во входной так и в выходной цепях образованного канала связи в действительных (реальных) условиях недостаточно знания только собственного затухания.

Рабочее затухание (ар) - это затухание кабельной цепи в реальных условиях, т.е. при любых нагрузках по ее концам.

Как правило, в реальных условиях рабочее затухание больше собственного затухания (ар > а).

Одним из методов измерения рабочего затухания является метод разности уровней.

При измерениях по этому методу необходим генератор с известной ЭДС, известным внутренним сопротивлением Zо. Абсолютный уровень напряжения на согласованной нагрузке генератора Zо измеряется указателем уровня станции А и определяется:

а абсолютный уровень напряжения на нагрузке Zi измеряется указателем уровня станции Б.

Нормы на коэффициент затухания цепей некоторых типов кабельных линий связи, представлены в табл. 5.

Вторичные параметры легких полевых кабелей связи существенно зависят от способа прокладки линий (подвеска, по земле, в земле, в воде).

1.6 Измерение параметров влияния

Степень влияния между цепями кабельной линии связи принято оценивать величиной переходного затухания. Переходное затухание характеризует затухание токов влияния при переходе их с влияющей цепи в цепь, подверженную влиянию. При прохождении переменного тока по влияющей цепи вокруг нее создается переменное магнитное поле, которое пересекает цепь, подверженную влиянию.

Различают переходное затухание на ближнем конце Ао и переходное затухание на дальнем конце Аℓ.

Затухание переходных токов, проявляющихся на том конце цепи, где расположен генератор влияющей цепи, называется переходным затуханием на ближнем конце.

Затухание переходных токов, поступивших на противоположный конец второй цепи, называется переходным затуханием на дальнем конце.

Таблица 5. Нормы на коэффициент затухания цепей, Нп/км.

Частота, кГцКабельП-274П-274МП-270ТГ, ТБТЗГ, ТЗСП-296МКБ МКГМКСБ МКСГсухов водесухов воде0,80,1080,1570,0950,1440,0650,04÷0,670,043÷0,0660,0440,043100,2840,3980,2680,3740,1160,344÷0,6440,091÷0,1700,200,0910,087160,3200,4450,3040,4210,1360,103÷0,1820,230,0960,092300,1740,129÷0,2200,240,1110,114600,2290,189÷0,2750,280,1500,1451200,3110,299÷0,3830,380,2180,2102000,3920,460,2940,2743000,4740,3720,3325520,81

1.6.1 переходное затухание на ближнем конце

Переходное затухание на ближнем конце важно измерять и оценивать для четырехпроводных систем с разными направлениями передачи и приема. К таким системам относятся однокабельные системы передачи (П-303, П-302, П-301, П-330-6, П-330-24), работающие по одночетвёрочному кабелю (П-296, Р-270).

Наиболее распространенным методом измерения переходных затуханий является метод сравнения, используемый при применении комплекта приборов ВИЗ-600, П-322. При измерении прибором П-324 используется смешанный (сравнения и дополнения) метод.

Суть метода сравнения и дополнения заключается в том, что в положении 2 величина переходного затухания (Ао) дополняется затуханием магазина (амз) до значения на менее 10 Нп. Изменяя затухание магазина, добиваются выполнения условия Ао + амз ≥10 Нп.

Для удобства отсчета измеряемой величины на переключателе НП указаны цифры не затухания амз, фактически вносимого магазином, а разности 10 - амз.

Поскольку затухание магазина изменяется не плавно, а ступенями через 1 Нп, остаток затухания свой в Нп измеряется по шкале стрелочного прибора (ИП) в пределах от 0 до 1 Нп.

Перед измерением производится градуировка прибора (ИП), для чего переключатель НП схемы устанавливается в положение ГРАД (положение 1 на рис. 9). При этом выход генератора подключается к измерителю через эталонный удлинитель (ЭУ) с затуханием 10 Нп.

Нормы на переходное затухание приведены в табл. 6.

Таблица 6. Нормы на переходное затухание на ближнем конце внутри и между смежными четвёрками, не менее, Нп

Тип кабеляЧастота, кГцДлина линии, кмПереходное затуханиеП-27060106,0П-29660108,8МКБ МКГ100 2000,850 0,8506,8 6,8МКСБ, МКСГВесь диапазон частот0,6507,2

Для кабеля П-296 проверка переходного затухания производится также на частотах 10 кГц и 30 кГц.

1.6.2 Переходное затухание на дальнем конце

Переходное затухание на дальнем конце важно измерять и оценивать также для четырехпроводных систем, но с одинаковыми направлениями приема и передачи. К таким системам относятся двухкабельные системы передачи типа П-300, П-330-60.

Для измерения переходного затухания на дальнем конце Аℓ необходимо иметь два прибора П-324, устанавливаемых на противоположных концах измеряемых цепей. Измерение производится в три этапа.

Так же с помощью прибора П-324 возможно измерение затуханий не менее 5 Нп, на входе прибора включается удлинитель УД 5 Нп, входящий в состав устройства для проверки работоспособности прибора.

Полученный результат измерения делится пополам и определяется затухание одной цепи.

После этого собирается схема и проводится градуировка измерительного тракта прибора станции Б, подключаемого к влияющей цепи. При этом сумма затуханий цепи, удлинителя УД 5Нп и магазина затухания должна быть не менее 10 Нп, остаток затухания сверх 10Нп устанавливается на стрелочном приборе.

На третьем этапе измеряется переходное затухание на дальнем конце. Результат измерения представляет собой сумму показаний переключателя НП и стрелочного прибора.

Измеренная величина переходного затухания на дальнем конце сравнивается с нормой. Нормой переходного затухания на дальнем конце приведены в табл. 7.

Таблица 7

Тип кабеляЧастота, кГцДлина линии, кмПереходное затуханиеП-27060105,5П-29660105,0МКБ МКГ100 2000,850 0,8507,8 7,8МКСБ, МКСГВесь диапазон частот0,6508,2

Во всех симметричных кабельных цепях переходное затухание с ростом частоты снижается примерно по логарифмическому закону. Для увеличения переходного затухания между цепями токопроводящие жилы при изготовлении скручиваются в группы (пары, четверки, восьмерки), группы свиваются в кабельный сердечник, цепи экранируются, а при прокладке кабельных линий связи производится симметрирование кабеля. Симметрирование на кабелях низкой частоты заключается в дополнительном скрещивании их при развертывании и включение конденсаторов. Симметрирование на ВЧ кабелях - это скрещивание и включение контуров противосвязи. Потребность в симметрировании может возникнуть при ухудшении параметров влияния кабеля в процессе его долголетнего использования или при строительстве линии связи большой протяженности. Необходимость симметрирования кабеля должна определяться в каждом конкретном случае, исходя из фактической величины переходного затухания цепей, которая зависит от системы связи (системы использования цепей кабеля и аппаратуры уплотнения) и протяженности линии.

2. Определение характера и места повреждения кабельных линий связи

2.1 Общие положения

На кабелях связи могут быть следующие виды повреждений:

понижение сопротивления изоляции между жилами кабеля или между жилами и землей;

понижение сопротивления изоляции «оболочка - земля» или «броня - земля»;

полный обрыв кабеля;

пробой диэлектрика;

асимметрия сопротивления жил;

разбитость пар в симметричном кабеле.

2.2 Испытания для определения характера повреждений

Определение характера повреждений («земля», «обрыв», «короткое» понижение сопротивления изоляции) проводится испытанием каждой жилы кабеля с помощью схем мегомметра или омметра различных измерительных приборов (например, П-324, ПКП-3, ПКП-4, КМ-61С и др). В качестве омметра можно использовать комбинированный прибор «тестер».

Испытания проводятся в следующем порядке:

Проверяется сопротивление изоляции между одной жилой и остальными, соединенными с заземленным экраном.

На станции А, где проводятся испытания, все жилы, кроме одной, соединяются вместе и с экраном и заземляются. На станции Б жилы ставятся на изоляцию. Измеряется сопротивление изоляции и сравнивается с нормой для данного типа кабеля. Испытания и анализ проводятся для каждой жилы кабеля. Если измеренное значение сопротивления изоляции окажется ниже нормы, то определяется характер повреждения:

повреждение изоляции относительно «земли»;

повреждение изоляции относительно экрана кабеля;

повреждение изоляции относительно других жил кабеля.

Для определения характера повреждения на станции А поочередно снимают «землю» с жил кабеля и проводят анализ:

а) если снятие «земли» с какой-то жилы (например, с жилы 2 на рис. 13) приводит к резкому увеличению сопротивления изоляции, то повреждена изоляция между испытываемой жилой (жила 1) и той, с которой снята «земля» (жила 2);

б) если снятие «земли» со всех жил не приводит к увеличению сопротивления изоляции до нормы, то изоляция испытуемой жилы (жила 1) повреждена относительно экрана кабеля (земли).

Если при очередном испытании окажется, что сопротивление изоляции составляет сотни Ом или единицы кОм, то это указывает на возможное короткое замыкание между испытываемыми жилами кабеля (например, «короткое» показано между жилами 3 и 4);

Проверяется целость жил кабеля, для чего все жилы на станции Б соединяются вместе и с экраном. На станции А каждая жила проверяется омметром на целость.

Установление характера повреждения позволяет выбрать один из методов определения до места повреждения.

2.3 Определение места повреждения изоляции жил проводов

Для определения места повреждения изоляции жил применяют мостовые схемы, выбор которых зависит от того, имеются ли в данном кабеле исправные жилы или нет.

При наличии исправного провода, равного по сопротивлению поврежденному, и при сопротивлении изоляции поврежденного провода до 10мОм измерения производят методом моста с переменным отношением балансных плеч.

Величины сопротивления плеч моста Rа и Rм при измерениях подбираются таким образом, чтобы ток в диагонали моста, в которую включен ИП, отсутствовал.

При определении места повреждения изоляции методом моста с переменным отношением балансных плеч используются приборы ПКП-3, ПКП-4, КМ-61С. В этих приборах сопротивление Rм переменное и определяется при измерениях в момент равновесия моста, а сопротивление Rа постоянное и для приборов ПКП выбрано равным 990 ОМ, для прибора КМ-61С-1000 Ом.

Если исправный и поврежденный провода имеют разные сопротивления, то измерения производятся с обоих концов кабельной линии связи.

При использовании приборов ПКП-3, ПКП-4 могут применяться и другие методы измерения сопротивления изоляции с целью определения места повреждения кабеля:

  1. Метод моста с переменным отношением балансных плеч со вспомогательной линией. Применяется при наличии исправных проводов, не равных по сопротивлению повреждённому, и сопротивлений изоляции повреждённого провода до 10 МОм, а вспомогательного - свыше 5000 МОм,
  2. Метод моста с постоянным отношением балансных плеч способом двойной петли. Применяется при наличии значительных токов помех и сопротивлений изоляции повреждённого провода до 10 М0 м, а вспомогательная - свыше 5000 МОм.
  3. Метод моста с постоянным отношением балансных плеч при больших переходных сопротивлениях. Применяется при наличии исправного провода, равного по сопротивлению повреждённому, и переходном сопротивлении в месте повреждения изоляции до 10 МОм.
  4. Метод двухсторонних измерений сопротивления шлейфа повреждённых проводов. Применяется при отсутствии исправных проводов и переходном сопротивлении порядка сопротивления шлейфа.

5. Метод холостого хода и короткого замыкания при использовании моста с постоянным отношением балансных плеч. Применяется при отсутствии исправных проводов и переходном сопротивление в месте повреждения изоляции до 10 кОм.

Метод холостого хода и короткого замыкания при использовании моста с переменным отношением балансных плеч. Применяется при отсутствии исправных проводов и переходном сопротивлении в месте повреждения изоляции от 0,1 до 10 МОм.

При отсутствии исправных проводов определение места повреждения изоляции мостовыми методами с достаточной точностью представляет определенные трудности. В этом случае могут использоваться импульсный и индуктивный методы. Для измерений импульсным методом применяются прибором Р5-5, P5-10, дальность действия которых может достигать 20-25 км на симметричных кабелях связи.

2.4 Определение места обрыва проводов

Определение места обрыва проводов может осуществляться следующим методами:

Метод моста на пульсирующем токе. Применяется при наличии исправного провода, равного по сопротивлению поврежденному.

Метод сравнения ёмкостей (баллистический метод). Применяется при равной удельной ёмкости исправного и повреждённого проводов.

Метод сравнения ёмкостей при двухстороннем измерении. Применяется при неравной удельной емкости повреждённого и исправного проводов и, в частности, при невозможности заземлить неизмеряемые провода лини.

Для определения места обрыва проводов могут использоваться приборы ПКП-3, ПКП-4, KM-61C, П-324.

При наличии в кабеле исправной жилы и возможности заземления всех остальных жил кабеля поочередно измеряется рабочая ёмкость исправной жилы (Сℓ), затем поврежденной жилы (Сх).

Если же по условиям эксплуатации кабеля заземление остальных неизмеряемых жил невозможно, то для получения достоверного результата оборванную жилу измеряют с двух сторон, расстояние до места обрыва вычисляют по формуле: