Способы и технологии цементирования скважин: как приготовить и залить тампонажный раствор. Снижение трудоемкости заполнения раствором бетона пространства между дефектной трубой и новой трубой при ремонте водопропускных труб Напорные канализационные трубоп

Изобретение относится к строительству трубопроводов. Способ предназначен для устранения температурных напряжений в трубопроводах типа «труба в трубе» в рабочем герметичном состоянии внутреннего трубопровода (при отсутствии избыточного давления в межтрубном пространстве) без установки специальных компенсаторов внутри. Способ заключается в размещении в межтрубном пространстве уплотнительных узлов, выполненных в виде плотно навитых друг к другу спиральных рукавов. Рукава выполняют из эластичного непроницаемого для воздуха материала, наматывают их с небольшим зазором по концам трубопровода типа «труба в трубе» на внутренний трубопровод в виде двух спиралей, каждая длиной не менее внутреннего диаметра трубопровода. Заводят спирали в межтрубное пространство, заполняют рукава воздухом, концы межтрубного пространства закрывают кольцевыми жестко связанными с наружным трубопроводом заглушками, обеспечивающими свободное перемещение наружного и внутреннего трубопроводов друг относительно друга при отсутствии избыточного давления в межтрубном пространстве. Технический результат изобретения - повышение надежности защиты окружающей среды. 2 з.п. ф-лы.

Изобретение относится к строительству трубопроводов, преимущественно подводных переходов, и предназначено для устранения температурных напряжений в трубопроводах типа «труба в трубе» в рабочем состоянии без установки внутри специальных компенсаторов и предотвращения попадания перекачиваемых по внутреннему трубопроводу жидких углеводородов в окружающую среду в случае нарушения герметичности внутреннего трубопровода.

Известно сооружение трубопроводов типа «труба в трубе», при котором межтрубное пространство герметизируют путем заполнения спиральных, неплотно навитых навстречу друг к другу по всей длине внутреннего трубопровода рукавов затвердевающим цементным раствором. Температурные напряжения во внутреннем трубопроводе гасят путем устройства специальных компенсаторов в виде спирально навитых навстречу друг к другу замкнутых металлических полостей (А.С. СССР № 1460512, кл. F16L 1/04, 1989).

Недостатком герметизации межтрубного пространства в этом случае является обязательная установка компенсаторов температурных напряжений внутри трубопровода типа «труба в трубе», что существенно усложняет и удорожает всю известную конструкцию трубопровода типа «труба в трубе».

Ближайшим по существу техническим решением является герметизация полости трубопроводов, при которой уплотнители выполняют в виде плотно навитых по спирали рукавов, заполняют рукава несжимаемыми наполнителями (патент РФ, № 2025634, Кл. F16L 55/12, 1994).

В этом случае не обеспечивается полная герметизация пространства при достаточно большом избыточном давлении перед уплотнителем. Такое давление может быть перед рукавным уплотнителем, если его установить в межтрубном пространстве. При повреждении (нарушении герметичности) внутреннего трубопровода системы «труба в трубе» загрязняющая жидкость может просочиться по спиральным зазорам между плотно навитыми недеформируемыми под давлением круглыми в поперечном сечении рукавами с несжимаемым наполнителем и попасть в окружающую среду. Такая герметизация полости трубопровода имеет ограниченную область применения и может быть использована только при давлении перед рукавным уплотнителем близком к атмосферному, т.е. только при проведении ремонтных работ по устранению (вырезке) поврежденных участков обычных (не «труба в трубе») трубопроводов.

Цель изобретения - надежная защита окружающей среды от разливов жидких углеводородов при нарушении герметичности внутреннего трубопровода системы «труба в трубе» и обеспечение компенсации температурных напряжений во внутреннем трубопроводе в рабочем состоянии (без нарушения его герметичности) за счет свободного осевого перемещения внутреннего трубопровода относительно наружного в исправном состоянии системы «труба в трубе».

Надежная защита окружающей среды достигается за счет того, что герметизацию межтрубного пространства выполняют путем установки в межтрубное пространство плотно навитых в виде спирали рукавов из эластичного непроницаемого для воздуха материала, которые заполняют сжимаемым наполнителем (воздухом). При нарушении герметичности внутреннего трубопровода избыточное давление в межтрубном пространстве повышается, сдавливает и плотно прижимает спирально навитые рукава с воздухом к стенкам наружного и внутреннего трубопроводов, обеспечивая, таким образом, полную герметичность межтрубного пространства.

Обеспечение компенсации температурных напряжений внутреннего трубопровода в рабочем состоянии (при отсутствии избыточного давления в межтрубном пространстве) достигается за счет того, что воздух в спирально навитые рукава подают под низким давлением, близким к атмосферному, при котором практически отсутствуют силы трения между рукавами и стенками внутреннего трубопровода, препятствующие относительному продольному перемещению наружного и внутреннего трубопроводов в исправном состоянии.

Способ реализуется следующим образом. Рукава выполняют из эластичного непроницаемого для воздуха материала, наматывают их с небольшим зазором по концам трубопровода «труба в трубе» на внутренний трубопровод в виде двух спиралей каждая длиной не менее внутреннего диаметра трубопровода, заводят спирали в межтрубное пространство, заполняют рукава воздухом, концы межтрубного пространства закрывают кольцевыми жестко связанными с наружным трубопроводом заглушкам, обеспечивающими свободное перемещение наружного и внутреннего трубопроводов друг относительно друга при отсутствии избыточного давления в межтрубном пространстве. Для исключения температурных напряжений в трубопроводе типа «труба в трубе» непроницаемые рукава, намотанные в виде плотной спирали на внутренний трубопровод, заполняют воздухом при давлении, обеспечивающем свободное перемещение трубопроводов друг относительно друга при отсутствии избыточного давления в межтрубном пространстве.

Для исключения самопроизвольного разматывания спиралей при заведении их в межтрубное пространство концы спиралей соединяют гибкой связью или ограничивают их концы кольцевыми втулками.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ герметизации межтрубного пространства трубопроводов типа «труба в трубе», включающий размещение в трубопроводах уплотнительных узлов, выполненных в виде плотно навитых друг к другу спиральных рукавов с наполнителями, отличающийся тем, что рукава выполняют из эластичного непроницаемого для воздуха материала, наматывают их с небольшим зазором по концам трубопровода типа «труба в трубе» на внутренний трубопровод в виде двух спиралей каждая длиной не менее внутреннего диаметра трубопровода, заводят спирали в межтрубное пространство, заполняют рукава воздухом, концы межтрубного пространства закрывают кольцевыми жестко связанными с наружным трубопроводом заглушками, обеспечивающими свободное перемещение наружного и внутреннего трубопроводов относительно друг друга при отсутствии избыточного давления в межтрубном пространстве.

2. Способ по п.1, отличающийся тем, что для исключения температурных напряжений в трубопроводе типа «труба в трубе» непроницаемые рукава, намотанные в виде плотных спиралей на внутренний трубопровод, заполняют воздухом при давлении, обеспечивающем свободное перемещение трубопроводов относительно друг друга при отсутствии избыточного давления в межтрубном пространстве.

3. Способ по п.1, отличающийся тем, что для исключения самопроизвольного разматывания спиралей при заведении их в межтрубное пространство концы спиралей соединяют гибкой связью или ограничивают их концы кольцевыми втулками.

После бурения скважины в рыхлых песчаных грунтах наступает этап, направленный на укрепление труб обсадной колонны. Заодно следует защитить ствол от повреждения, агрессивного воздействия грунтовых вод, коррозии и прочих негативных явлений. Речь идёт о таком процессе, как цементирование скважин.

Выполнить работу по цементированию самостоятельно достаточно сложно, но возможно, при наличии знаний о технологиях проведения мероприятия. Мы расскажем вам о том, зачем нужно проводить цементирование и на что нужно обратить внимание при выполнении работ. Для наглядности, материал содержит тематические фото и видеоролики.

Цементирование скважины – процесс, который следует сразу после окончания . Процедура цементирования заключается в том, что в затрубное или межтрубное (в случае если обсадная труба помещена в свою очередь в полиэтиленовую более широкую трубу) вводится цементный раствор, который со временем затвердевает, образуя монолитный ствол скважины.

Цементный раствор в этом случае называется “тампонажный”, а сам процесс “тампонированием”. Сложный инженерный процесс, именуемый технологией цементирования скважин, требует определённых знаний и специального оборудования.

В большинстве случаев источники воды можно тампонировать своими руками, что обходится гораздо дешевле, чем привлечение специалистов.

Цементирование скважин – комплекс мероприятий, направленный на укрепление затрубного пространства и обсадной колонны от разрушающего бокового давления горных пород и воздействия грунтовых вод

Правильно произведённое тампонирование скважин на воду способствует:

  • обеспечению прочности конструкции скважины;
  • защите скважины от грунтовых и верховых вод;
  • укреплению обсадной трубы и защите её от коррозии;
  • повышению срока эксплуатации водоисточника;
  • устранению крупных пор, пустот, зазоров, через которые в водоносный горизонт могут попасть нежелательные частицы;
  • вытеснению бурового раствора цементным, если первый использовался при бурении.

От того, насколько грамотно осуществлено цементирование, будет зависеть качество добываемой воды и эксплуатационные характеристики скважины. Также цементирование производится для ликвидируемых скважин, которые больше не будут больше эксплуатироваться.

Галерея изображений

выбора труб и материалов для строительства и реконструкции трубопроводов водоснабжения

на объектах АО «Мосводоканал»

1. На стадии проектирования в зависимости от условий прокладки и метода производства работ выбираются материал, тип трубы (толщина стенки трубы, стандартное размерное отношение (SDR), кольцевая жесткость (SN), наличие наружного и внутреннего защитного покрытия трубы), решается вопрос усиления прокладываемой трубы с помощью ж/б обоймы или стального футляра. Для всех материалов труб необходимо проведение прочностного расчета на воздействие внутреннего давления рабочей среды, давления грунта, временных нагрузок, собственной массы труб и массы транспортируемой жидкости, атмосферного давления при образовании вакуума и внешнего гидростатического давления грунтовых вод, определение осевого усилия протягивания (продавливания).

2. Перед выбором метода реконструкции проводится техническая диагностика трубопровода с целью определения его состояния и остаточного ресурса.

3. Выбор материала трубопровода необходимо обосновать сравнительным технико-экономический расчетом. Расчет проводится с учетом требований АО «Мосводоканал». При пересечении с существующими инженерными коммуникациями или расположении трубопровода в их охранной зоне учитываются требования сторонних эксплуатирующих организаций. Технико-экономическое обоснование и прочностные расчеты трубопровода входят в состав проектно-сметной документации и предъявляются при рассмотрении проекта.


4. Все материалы, применяемые для прокладки водопроводных сетей (трубы, тонкостенных лайнеров, рукава и внутренние набрызговые покрытия) должны проходить дополнительные испытания на общетоксическое действие составляющих компонентов, которые могут диффундировать в воду в опасных для здоровья населения концентрациях и привести к аллергенным , кожно-раздражающим, мутагенным и другим отрицательным воздействиям на человека.

5.При прокладке полиэтиленовых труб без ж/б обоймы или стального футляра на урбанизированных и промышленных территориях должна быть подтверждена экологическая безопасность окружающего грунта по трассе проектирования. В случае наличия недопустимых загрязнений в грунте и грунтовых водах (ароматических углеводородов, органических химикалий и пр.) выполняется рекультивация грунта.

6. Стальные трубы, ранее использовавшиеся не для трубопроводов питьевого водоснабжения , не допускаются для устройства водопроводных байпасов.

7.Восстановленные бывшие ранее в эксплуатации стальные трубы не допускаются для новой прокладки и реконструкции водопроводных трубопроводов (трубы для рабочей среды). Возможно их использование для устройства футляров.

8. Стальные спиралешовные трубы (по ГОСТ 20295-85 с объемной термообоработкой) допускается использовать при устройстве футляров, байпасных линий.

9. При прокладке труб в футлярах выполняется забутовка межтрубного пространства цементно-песчаным раствором.

10.При новом строительстве стальных трубопроводов водопровода открытой прокладки (не имеющих стальных футляров и ж/б обойм) предусматривать в случае необходимости одновременную защиту трубы от электрохимической коррозии согласно ГОСТ 9.602-2005.

11.При реконструкции стальных трубопроводов (не имеющих стальных футляров и ж/б обойм) без разрушения существующей трубы и при оперативном восстановлении локальных и аварийных участков трубопроводов методами, не обладающими несущей способностью, предусматривать в случае необходимости одновременную защиту трубы от электрохимической коррозии согласно ГОСТ 9.602-2005.

12.Допускается применение литых фасонных частей из ВЧШГ с внутренним и наружным эпоксидно-порошковым покрытием, разрешенным для применения в системах питьевого водоснабжения (свидетельство о государственной регистрации, экспертное заключение о соответствии продукции Единым санитарно-эпидемиологическим и гигиеническим требованиям к товарам, подлежащим санитарно-эпидемиологическому надзору).

13.Специалисты АО «Мосводоканал» имеют право посещать заводы, поставляющие трубы, и знакомиться с условиями организации производства и контроля качества продукции, а также проводить проверку поставляемой продукции.

14. Испытания полиэтиленовых труб проводятся на образцах, изготовленных из труб.

14.1. Показатели характеристик материала трубы должны соответствовать следующим значениям:

Термостабильность при 200оС – не менее 20 мин.;

Массовая доля технического углерода (сажи) – 2,0-2,5% ;

Распределение технического углерода (сажи) или пигмента – тип I-II;

Относительное удлинение при разрыве образца трубы – не менее 350%.

14.2. При проверке сварного шва разрушение образца должно наступать при достижении относительного удлинения более 50% и характеризоваться высокой пластичностью. Линия разрыва должна проходить по основному материалу и не пересекает плоскость сварки. Результаты испытания считаются положительными, если при испытании на осевое растяжение не менее 80% образцов имеют пластичный характер разрушения I типа. Остальные 20% образцов могут иметь характер разрушения II типа. Разрушение III типа не допускается.


2.Технические требования по применению труб и материалов

для строительства и реконструкции канализации на объектах АО "Мосводоканал"

МГСН 6.01-03

Для диаметра более 3000 мм

2.2.3.1.Б. Монтаж стеклопластиковых труб, предназначенных для релайнинга,

Стеклопластиковых труб, изготовленных по технологии методом непрерывной намотки стекловолокна на основе полиэфирных связующих;

Hobas «quality DA», изготовленных методом центрифугирования, имеющих внутренний лайнер на основе винилэфирного связующего толщиной не менее 1,0 мм на муфтовом соединении с центровкой трубы.

Кольцевая жесткость труб не менее SN 5000 Н/м2.

ГОСТ Р 54560-2011, ГОСТ ИСО 10467-2013, СП 40-105-2001, МГСН 6.01-03

2.2.3.2.Б Монтаж композитных элементов из полимербетона

МГСН 6.01-03

Напорные канализационные трубопроводы

Новое строительство напорных трубопроводов

Траншейная прокладка

Бестраншейная прокладка

3.1.Т. Укладка труб из высокопрочного чугуна с шаровидным графитом (ВЧШГ) с наружным цинковым покрытием и внутренним химически стойким покрытием

ГОСТ Р ИСО 2531-2012,

СП 66.133330.2011

3.1.Б. Монтаж труб из высокопрочного чугуна с шаровидным графитом (ВЧШГ) на неразъемном соединении с наружным цинковым покрытием и внутренним химическистойким покрытием в футляре с центровкой.

МГСН 6.01-03

3.2.Т. Укладка стальных прямошовных труб с внутренним цементно-песчаным покрытием и наружной изоляцией весьма усиленного типа по ГОСТ 9.602-2005 с одновременным устройством электрозащиты при необходимости.

ГОСТ 20295-85, МГСН 6.01-03

3.2.Б. Монтаж стальных прямошовных труб с внутренним цементно-песчаным покрытием и наружной изоляцией весьма усиленного типа по ГОСТ 9.602-2005 в футляре с центровкой.

Диаметр до 500мм – сталь марки Ст20

Диаметр 500мм и более – сталь марки 17Г1С, 17Г1СУ

ГОСТ 10704-91, ГОСТ 10705-80, ГОСТ 10706-76,

ГОСТ 20295-85, МГСН 6.01-03

3.3.Т. Укладка:

Стеклопластиковых труб, изготовленных по технологии FLOWTITE методом непрерывной намотки стекловолокна с применением ненасыщенных полиэфирных смол.

Кольцевая жесткость укладываемых труб не менее SN 10000 Н/м2. Соединение муфтовое. Прокладка в железобетонной обойме или футляре.

ГОСТ Р ИСО 10467-2013, СП 40-105-2001

3.3.Б . Монтаж:

Стеклопластиковых труб Hobas «quality DA», изготовленных методом центрифугирования, имеющих внутренний лайнер на основе винилэфирного связующего толщиной не менее 1,0 мм;

Кольцевая жесткость укладываемых труб не менее SN 10000 Н/м2. Соединение муфтовое. Прокладка в предварительно проложенном футляре с центровкой.

3.4.Т. Укладка полиэтиленовых труб однослойных из ПЭ100 на сварном соединении в железобетонной обойме или футляре

3.4.Б . ПЭ100 на сварном соединении в предварительно проложенном футляре.

3.5.Т Для диаметров до 300мм включительно: Укладка труб напорных из полиэтилена ПЭ100 в грунтах с несущей способностью не ниже 0,1 МПа (песках) и устройстве основания и обратной засыпки в соответствии с требованиями «Регламента использования полиэтиленовых труб для реконструкции сетей водоснабжения и водоотведения» (раздел 4).

ГОСТ 18599-2001, СП 40-102-2000

3.5.Б. Для метода ГНБ - ПЭ100-МП

ГОСТ 18599-2001, МГСН 6.01-03, СП 40-102-2000

Реконструкция существующих напорных трубопроводов

Реконструкция с разрушением существующей трубы

4.1.1.Б. Монтаж труб из высокопрочного чугуна с шаровидным графитом (ВЧШГ) на неразъемном соединении с наружным цинковым покрытием и внутренним химически стойким покрытием

ГОСТ ИСО 2531-2012, СП 66.133330.2011,

МГСН 6.01-03

4.1.2.Б. Монтаж стальных труб с внутренним цементно-песчаным покрытием и наружной изоляцией весьма усиленного типа по ГОСТ 9.602-2005.

Диаметр до 500мм – сталь марки Ст20

Диаметр 500мм и более – сталь марки 17Г1С, 17Г1СУ

ГОСТ 10704-91, ГОСТ 10705-80, ГОСТ 10706-76,

ГОСТ 20295-85, МГСН 6.01-03

4.1.3.Б. Монтаж труб напорных из полиэтилена ПЭ100-МП с наружным защитным покрытием от механических повреждений на базе минералонаполненного полипропилена. Соединение сварное.

ГОСТ 18599-2001, МГСН 6.01-03, СП 40-102-2000

4.1.4.Б. Монтаж:

Стеклопластиковых труб Hobas «quality DA», изготовленных методом центрифугирования, имеющих внутренний лайнер на основе винилэфирного связующего толщиной не менее 1,0 мм;

Стеклопластиковых труб, изготовленных по технологии FLOWTITE методом непрерывной намотки стекловолокна с применением ненасыщенных полиэфирных смол.

Кольцевая жесткость укладываемых труб не менее

SN 10000 Н/м2. Соединение муфтовое.

ГОСТ Р ИСО 10467-2013, МГСН 6.01-03

Реконструкция без разрушения существующей трубы

4.2.1.Б. Монтаж труб из высокопрочного чугуна с шаровидным графитом (ВЧШГ) на неразъемном соединении с наружным цинковым покрытием и внутренним химически стойким покрытием с центровкой трубы.

4.2.2.Б. Монтаж стальных труб с внутренним цементно-песчаным покрытием и наружной изоляцией весьма усиленного типа по ГОСТ 9.602-2005 с центровкой трубы.

Диаметр до 500мм – сталь марки Ст20

Диаметр 500мм и более – сталь марки 17Г1С, 17Г1СУ

ГОСТ 10704-91, ГОСТ 10705-80, ГОСТ 10706-76,

ГОСТ 20295-85, МГСН 6.01-03

4.2.3.Б. Монтаж труб напорных из полиэтилена ПЭ100 на сварном соединении.

Предварительная подготовка внутренней поверхности трубопровода должна исключать недопустимые повреждения трубы при протаскивании.

ГОСТ 18599-2001, МГСН 6.01-03, СП 40-102-2000

4.2.4.Б . Монтаж:

Стеклопластиковых труб Hobas «quality DA», изготовленных методом центрифугирования, имеющих внутренний лайнер на основе винилэфирного связующего толщиной не менее 1,0 мм;

Стеклопластиковых труб, изготовленных по технологии FLOWTITE методом непрерывной намотки стекловолокна с применением ненасыщенных полиэфирных смол.

Кольцевая жесткость укладываемых труб не менее SN 10000 Н/м2. Соединение муфтовое, с центровкой трубы.

ГОСТ Р ИСО 10467-2013, МГСН 6.01-03

4.2.5.Б . Инвертирование полимерно-тканевых и композитных рукавов с последующей вулканизацией с помощью теплоносителя или ультрафиолетового излучения:

Полимерного рукава, изготавливаемого по технологии «Аарслефф» (Дания);

Комплексного рукава, изготавливаемого по технологии "Бертос" (Россия) ТУ 2256-001-59785315-2009;

Термоотверждаемого композитного армированного рукава, изготавливаемого по технологии COMBILINER TUBETEX KAWO (Чехия).

Кольцевая жесткость рукавов принимается по расчету или по нормативным документам в зависимости от остаточного ресурса трубопровода.

МГСН 6.01-03

Прокладка дюкеров

5.1. Прокладка бестраншей-ными методами рабочей трубы в футляре с центровкой

5.1.1. Трубы напорные из полиэтилена ПЭ100

ГОСТ 18599-2001, МГСН 6.01-03, СП 40-102-2000

5.1.2. Трубы стальные прямошовные с внутренним цементно-песчаным покрытием и наружной изоляцией весьма усиленного типа по ГОСТ 9.602-2005

Диаметр 500мм и более – сталь марки 17Г1С, 17Г1СУ

5.1.3. Трубы из высокопрочного чугуна с шаровидным графитом (ВЧШГ) на неразъемном соединении с наружным цинковым покрытием и внутренним химическистойким покрытием с центровкой трубы.

ГОСТ ИСО 2531-2012, СП 66.133330.2011, МГСН 6.01-03

5.1.4. Монтаж:

Стеклопластиковых труб, изготовленных по технологии методом непрерывной намотки стекловолокна на основе полиэфирных связующих;

Стеклопластиковых труб, изготовленных по технологии «Стеклокомпозит» на основе полиэфирных смол;

Стеклопластиковых труб Hobas «quality DA», изготовленных методом центрифугирования, имеющих внутренний лайнер на основе винилэфирного связующего толщиной не менее 1,0 мм;

Стеклопластиковых труб, изготовленных по технологии FLOWTITE методом непрерывной намотки стекловолокна с применением ненасыщенных полиэфирных смол.

Кольцевая жесткость укладываемых труб не менее SN 5000 Н/м2(для самотечных сетей) и SN 10000 Н/м2 (для напорных трубопроводов). Соединение муфтовое.

ГОСТ Р 54560-2011(для самотечных сетей), ГОСТ Р ИСО 10467-2013, МГСН 6.01-03, СП 40-105-2001

5.2. Прокладка методом ГНБ

5.2.1. Трубы из высокопрочного чугуна с шаровидным графитом (ВЧШГ) на неразъемном соединении с наружным цинковым покрытием и внутренним химическистойким покрытием.

ГОСТ ИСО 2531-2012, СП 66.133330.2011, МГСН 6.01-03.

5.2.2. Трубы напорные из полиэтилена ПЭ100-МП с наружным защитным покрытием от механических повреждений на базе минералонаполненного полипропилена. Соединение сварное.

ГОСТ 18599-2001, МГСН 6.01-03, СП 40-102-2000

5.3. Работы выполняются с поверхности воды

5.3.1 . Трубы стальные прямошовные с внутренним цементно-песчаным покрытием и наружным балластным защитным бетонным покрытием, выполненным в заводских условиях.

Диаметр до 500мм – сталь марки Ст20