Корень, его функции. Типы корней и корневых систем. Корень и корневые системы Корневая система образуется

Корень – основной вегетативный орган растения, выполняющий в типичном случае функцию почвенного питания. Корень – осевой орган, обладающий радиальной симметрией и неопределенно долго нарастающий в длину благодаря деятельности апикальной меристемы. От побега он морфологически отличается тем, что на нем никогда не образуются листья, а апикальная меристема всегда прикрыта корневым чехликом.

Кроме главной функции поглощения веществ из почвы, корни выполняют и другие функции:

1) корни укрепляют («заякоривают») растения в почве, делают возможным вертикальный рост и вынесение побегов наверх;

2) в корнях синтезируются различные вещества, которые затем передвигаются в другие органы растения;

3) в корнях могут откладываться запасные вещества;

4) корни взаимодействуют с корнями других растений, микроорганизмами, грибами, обитающими в почве.

Совокупность корней одной особи образует единую в морфологическом и физиологическом отношении корневую систему .

В состав корневых систем входят корни различной морфологической природы – главный корень, боковые и придаточные корни.

Главный корень развивается из зародышевого корешка. Боковые корни образуются на корне (главном, боковом, придаточном), который по отношению к ним обозначается как материнский . Они возникают на некотором расстоянии от апекса, в направлении от основания корня к его верхушке. Боковые корни закладываются эндогенно , т.е. во внутренних тканях материнского корня. Если бы ветвление происходило в самом апексе, это бы затруднило продвижение корня в почве. Придаточные корни могут возникать и на стеблях, и на листьях, и на корнях. В последнем случае они отличаются от боковых корней тем, что не обнаруживают строгого порядка заложения вблизи апекса материнского корня и могут возникать на старых участках корней.

По происхождению выделяют следующие типы корневых систем (рис. 4.1):

1) система главного корня представлена главным корнем (первого порядка) с боковыми корнями второго и последующих порядков (у многих кустарников и деревьев, большинства двудольных растений);

2)система придаточных корней развивается на стеблях, листьях; встречается у большинства однодольных растений и многих двудольных, размножающихся вегетативно;

3)смешанная корневая система образована главным и придаточными корнями с их боковыми ответвлениями (многие травянистые двудольные).

Рис. 4.1. Типы корневых систем : А – система главного корня; Б – система придаточных корней; В – смешанная корневая система (А и В – стержневые корневые системы; Б – мочковатая корневая система).

По форме различают стержневую и мочковатую корневые системы.


В стержневой корневой системе главный корень сильно развит и хорошо заметен среди остальных корней. В мочковатой корневой системе главный корень незаметен или его нет, а корневая система составлена многочисленными придаточными корнями (рис. 4.1).

Корень обладает потенциально неограниченным ростом. Однако в естественных условиях рост и ветвление корней ограничены влиянием других корней и почвенных экологических факторов. Основная масса корней располагается в верхнем слое почвы (15 см), наиболее богатом органическими веществами. Корни деревьев углубляются в среднем на 10-15 м, а в ширину распространяются обычно за пределы радиуса крон. Корневая система кукурузы заходит на глубину около 1,5 м и примерно на 1 м во все стороны от растения. Рекордная глубина проникновения корней в почву отмечена у пустынного мескитового кустарника – более 53 м.

У одного куста ржи, выращенного в теплице, общая длина всех корней составила 623 км. Суммарный прирост всех корней за одни сутки равнялся примерно 5 км. Общая поверхность всех корней у этого растения составила 237 м 2 и была в 130 раз больше поверхности надземных органов.

Зоны молодого корневого окончания - это разные по длине части молодого корня, выполняющие неодинаковые функции и характеризующиеся определенными морфологическими и анатомическими особенностями (рис. 4.2 ).

Кончик корня снаружи всегда прикрыт корневым чехликом , защищающим апикальную меристему. Чехлик состоит из живых клеток и постоянно обновляется: по мере того, как с его поверхности слущиваются старые клетки, на смену им, изнутри, апикальная меристема образует новые молодые клетки. Наружные клетки корневого чехлика отслаиваются еще будучи живыми, они продуцируют обильную слизь, которая облегчает продвижение корня среди твердых частиц почвы. В клетках центральной части чехлика содержится много крахмальных зерен. По-видимому, эти зерна служат статолитами , т. е. способны перемещаться в клетке при изменении положения кончика корня в пространстве, благодаря чему корень растет всегда в сторону действия силы тяжести (положительный геотропизм ).

Под чехликом находится зона деления , представленная апикальной меристемой, в результате деятельности которой формируются все прочие зоны и ткани корня. Зона деления имеет размеры около 1 мм. Клетки апикальной меристемы относительно мелкие, многогранные, с густой цитоплазмой и крупным ядром.

Вслед за зоной деления располагается зона растяжения , илизона роста . В этой зоне клетки почти не делятся, а сильно растягиваются (растут) в продольном направлении, вдоль оси корня. Объем клеток увеличивается за счет поглощения воды и образования крупных вакуолей, при этом высокое тургорное давление проталкивает растущий корень между частицами почвы. Протяженность зоны растяжения обычно невелика и не превышает нескольких миллиметров.

Рис. 4.2.Общий вид (А) и продольный срез (Б) корневого окончания (схема ): I – корневой чехлик; II – зоны деления и растяжения; III – зона всасывания; IV – начало зоны проведения: 1 – растущий боковой корень; 2 – корневые волоски; 3 – ризодерма; 3а – экзодерма; 4 – первичная кора; 5 – эндодерма; 6 – перицикл; 7 – осевой цилиндр.

Далее идет зона поглощения , илизона всасывания . В этой зоне покровной тканью является ризодерма (эпиблема ), клетки которой несут многочисленные корневые волоски . Растяжение корня прекращается, корневые волоски плотно охватывают частицы почвы и как бы срастаются с ними, поглощая воду и растворенные в ней минеральные соли. Зона поглощения имеет протяжение до нескольких сантиметров. Эту зону называют также зоной дифференциации , поскольку именно здесь происходит образование постоянных первичных тканей.

Продолжительность жизни корневого волоска не превышает 10-20 дней. Выше зоны всасывания, там, где исчезают корневые волоски, начинается зона проведения . По этой части корня вода и растворы солей, поглощенные корневыми волосками, транспортируются в вышележащие органы растения. В зоне проведения формируются боковые корни (рис. 4.2).

Клетки зон всасывания и проведения занимают фиксированное положение и не могут смещаться относительно участков почвы. Однако сами зоны, вследствие постоянного верхушечного роста, непрерывно перемещаются вдоль корня по мере нарастания корневого окончания. В зону поглощения постоянно включаются молодые клетки со стороны зоны растяжения и одновременно исключаются клетки стареющие, переходящие в состав зоны проведения. Таким образом, всасывающий аппарат корня – подвижное образование, непрерывно передвигающееся в почве.

Так же последовательно и закономерно в корневом окончании возникают внутренние ткани.

Первичное строение корня. Первичная структура корня образуется в результате деятельности апикальной меристемы. Корень отличается от побега тем, что его апикальная меристема откладывает клетки не только внутрь, но и наружу, пополняя чехлик. Число и расположение инициальных клеток в апексах корней значительно варьируют у растений, принадлежащих к разным систематическим группам. Производные инициалей уже вблизи апикальной меристемы дифференцируются в первичные меристемы – 1) протодерму , 2) основную меристему и 3) прокамбий (рис. 4.3 ). Из этих первичных меристем в зоне всасывания формируются три системы тканей: 1) ризодерма , 2) первичная кора и 3) осевой (центральный) цилиндр , или стела .

Рис. 4.3. Продольный срез кончика корня лука.

Ризодерма (эпиблема , эпидерма корня ) – всасывающая ткань, образующаяся из протодермы , наружного слоя первичной меристемы корня. В функциональном отношении ризодерма представляет собой одну из важнейших тканей растения. Через нее идет поглощение воды и минеральных солей, она взаимодействует с живым населением почвы, через ризодерму из корня в почву выделяются вещества, помогающие почвенному питанию. Поглощающая поверхность ризодермы сильно увеличена благодаря наличию у части клеток трубчатых выростов – корневых волосков (рис. 4.4 ). Волоски имеют длину 1-2 мм (до 3 мм). У одного четырехмесячного растения ржи было установлено примерно 14 млрд. корневых волосков с площадью поглощения 401 м 2 и суммарной длиной более 10 000 км. У водных растений корневые волоски могут отсутствовать.

Стенка волоска очень тонкая и состоит из целлюлозы и пектиновых веществ. Ее наружные слои содержат слизь, что способствует установлению более тесного контакта с частицами почвы. Слизь создает благоприятные условия для поселения полезных бактерий, влияет на доступность почвенных ионов и защищает корень от иссушения. В физиологическом отношении ризодерма отличается большой активностью. Она поглощает минеральные ионы с затратой энергии. В гиалоплазме имеется большое количество рибосом и митохондрий, что характерно для клеток с высоким уровнем обмена веществ.

Рис. 4.4. Поперечный срез корня в зоне всасывания: 1 – ризодерма; 2 – экзодерма; 3 – мезодерма; 4 - эндодерма; 5 – ксилема; 6 – флоэма; 7 - перицикл.

Из основной меристемы формируется первичная кора . Первичная кора корня дифференцирована на: 1) экзодерму – наружную часть, лежащую непосредственно за ризодермой, 2) среднюю часть – мезодерму и 3) самый внутренний слой – эндодерму (рис. 4.4). Основную массу первичной коры составляет мезодерма , образованная живыми паренхимными клетками с тонкими стенками. Клетки мезодермы расположены рыхло, по системе межклетников вдоль оси корня циркулируют газы, необходимые для дыхания клеток. У болотных и водных растений, корни которых испытывают недостаток кислорода, мезодерма часто представлена аэренхимой. Также в мезодерме могут присутствовать механические и выделительные ткани. Паренхима первичной коры выполняет ряд важных функций: участвует в поглощении и проведении веществ, синтезирует различные соединения, в клетках коры часто откладываются запасные питательные вещества, например крахмал.

Наружные слои первичной коры, подстилающие ризодерму, образуют экзодерму . Экзодерма возникает как ткань, регулирующая прохождение веществ из ризодермы в кору, но после отмирания ризодермы выше зоны всасывания она оказывается на поверхности корня и превращается в защитную покровную ткань. Экзодерма формируется как один слой (реже несколько слоев) и состоит из живых паренхимных клеток, плотно сомкнутых между собой. По мере отмирания корневых волосков, стенки клеток экзодермы покрываются с внутренней стороны слоем суберина. В этом отношении экзодерма сходна с пробкой, но в отличие от нее первична по происхождению, и клетки экзодермы остаются живыми. Иногда в экзодерме сохраняются пропускные клетки с тонкими неопробковевшими стенками, через которые происходит избирательное поглощение веществ.

Самый внутренний слой первичной коры – эндодерма . Она в виде непрерывного цилиндра окружает стелу. Эндодерма в своем развитии может пройти три ступени. На первой ступени ее клетки плотно прилегают друг к другу и имеют тонкие первичные стенки. На их радиальных и поперечных стенках образуются утолщения в виде рамочек – пояски Каспари (рис. 4.5 ). Пояски соседних клеток тесно смыкаются между собой, так что вокруг стелы создается их непрерывная система. В поясках Каспари откладываются суберин и лигнин, что делает их непроницаемыми для растворов. Поэтому вещества из коры в стелу и из стелы в кору могут пройти только по симпласту, т. е. через живые протопласты клеток эндодермы и под их контролем.

Рис. 4.5. Эндодерма на первой ступени развития (схема).

На второй ступени развития суберин откладывается по всей внутренней поверхности клеток эндодермы. При этом некоторые клетки сохраняют первичное строение. Это пропускные клетки , они остаются живыми, и через них осуществляется связь между первичной корой и центральным цилиндром. Как правило, они расположены напротив лучей первичной ксилемы. У корней, не обладающих вторичным утолщением, эндодерма может получить третичное строение. Оно характеризуется сильным утолщением и одревеснением всех стенок, или чаще сравнительно тонкими остаются стенки, обращенные наружу (рис. 4.7 ). Пропускные клетки сохраняются и в третичной эндодерме.

Центральный (осевой ) цилиндр , или стела формируется в центре корня. Уже вплотную к зоне деления самый наружный слой стелы образует перицикл , клетки которого долго сохраняют характер меристемы и способность к новообразованиям. В молодом корне перицикл состоит из одного ряда живых паренхимных клеток с тонкими стенками (рис. 4.4). Перицикл выполняет несколько важных функций. У большинства семенных растений в нем закладываются боковые корни. У видов с вторичным ростом он участвует в формировании камбия и дает начало первому слою феллогена. В перицикле часто происходит образование новых клеток, входящих затем в его состав. У некоторых растений в перицикле возникают также зачатки придаточных почек. В старых корнях однодольных растений клетки перицикла часто склерифицируются.

За перициклом находятся клетки прокамбия , которые дифференцируются в первичные проводящие ткани. Элементы флоэмы и ксилемы закладываются по кругу, чередуясь друг с другом, и развиваются центростремительно. Однако ксилема в своем развитии обычно обгоняет флоэму и занимает центр корня. На поперечном разрезе первичная ксилема образует звезду, между лучами которой располагаются участки флоэмы (рис. 4.4). Такая структура получила название радиального проводящего пучка .

Звезда ксилемы может иметь различное число лучей – от двух до многих. Если их два, корень называют диархным , если три – триархным , четыре – тетрархным , а если много – полиархным (рис. 4.6 ). Число лучей ксилемы обычно зависит от толщины корня. В толстых корнях однодольных растений оно может достигать 20-30 (рис. 4.7). В корнях одного и того же растения число лучей ксилемы может быть различно, в более тонких ответвлениях оно сокращается до двух.

Рис. 4.6. Типы строения осевого цилиндра корня (схема): А – диархный; Б – триархный; В – тетрархный; Г – полиархный: 1 – ксилема; 2 – флоэма.

Пространственное разделение тяжей первичной флоэмы и ксилемы, расположенных на разных радиусах, и их центростремительное заложение представляют собой характерные особенности строения центрального цилиндра корня и имеют большое биологическое значение. Элементы ксилемы максимально приближены к поверхности стелы, и в них легче, минуя флоэму, проникают растворы, поступающие из коры.

Рис. 4.7. Поперечный срез корня однодольного растения : 1 – остатки ризодермы; 2 – экзодерма; 3 – мезодерма; 4 – эндодерма; 5 – пропускные клетки; 6 – перицикл; 7 – ксилема; 8 – флоэма.

Центральная часть корня обычно занята одним или несколькими крупными сосудами ксилемы. Присутствие сердцевины вообще нетипично для корня, однако в корнях некоторых однодольных в середине находится небольшой участок механической ткани (рис. 4.7 ) или тонкостенные клетки, возникающие из прокамбия (рис. 4.8).

Рис. 4.8.Поперечный срез корня кукурузы.

Первичная структура корня характерна для молодых корней всех групп растений. У споровых и однодольных растений первичное строение корня сохраняется в течение всей жизни.

Вторичное строение корня. У голосеменных и двудольных растений первичное строение сохраняется недолго и выше зоны всасывания сменяется вторичным. Вторичное утолщение корня происходит за счет деятельности вторичных боковых меристем – камбия и феллогена .

Камбий возникает в корнях из меристематических прокамбиальных клеток в виде прослойки между первичными ксилемой и флоэмой (рис. 4.9 ). В зависимости от числа флоэмных тяжей одновременно закладываются две или более зоны камбиальной активности. Сначала камбиальные прослойки разобщены между собой, но вскоре клетки перицикла, лежащие против лучей ксилемы, делятся тангенциально и соединяют камбий в непрерывный слой, окружающий первичную ксилему. Камбий откладывает внутрь слои вторичной ксилемы (древесины ) и наружу вторичную флоэму (луб ). Если этот процесс длится долго, то корни достигают значительной толщины.

Рис. 4.9. Заложение и начало деятельности камбия в корне проростка тыквы: 1 – первичная ксилема; 2 – вторичная ксилема; 3 – камбий; 4 – вторичная флоэма; 5 – первичная флоэма; 6 – перицикл; 7 – эндодерма.

Участки камбия, возникшие из перицикла, состоят из паренхимных клеток и не способны откладывать элементы проводящих тканей. Они образуют первичные сердцевинные лучи , представляющие собой широкие участки паренхимы между вторичными проводящими тканями (рис. 4.10 ). Вторичные сердцевинные , или лубодревесинные лучи возникают дополнительно при длительном утолщении корня, они обычно yже первичных. Сердцевинные лучи обеспечивают связь между ксилемой и флоэмой корня, по ним происходит радиальный транспорт различных соединений.

В результате деятельности камбия первичная флоэма оттесняется наружу и сдавливается. Звезда первичной ксилемы остается в центре корня, ее лучи могут сохраняться в течение длительного времени (рис. 4.10 ), но чаще центр корня заполняется вторичной ксилемой, и первичная ксилема становится незаметной.

Рис. 4.10. Поперечный срез корня тыквы (вторичное строение ): 1 – первичная ксилема; 2 – вторичная ксилема; 3 – камбий; 4 – вторичная флоэма; 5 – первичный сердцевинный луч; 6 – пробка; 7 – паренхима вторичной коры.

Ткани первичной коры не могут следовать за вторичным утолщением и обречены на гибель. Они заменяются вторичной покровной тканью – перидермой , которая может растягиваться на поверхности утолщающегося корня благодаря работе феллогена. Феллоген закладывается в перицикле и начинает откладывать наружу пробку , а внутрь - феллодерму . Первичная кора, отрезанная пробкой от внутренних живых тканей, отмирает и сбрасывается (рис. 4.11 ).

Клетки феллодермы и паренхима, образовавшаяся за счет деления клеток перицикла, образуют паренхиму вторичной коры , окружающую проводящие ткани (рис. 4.10 ). Снаружи корни вторичного строения покрыты перидермой. Корка образуется редко, лишь на старых корнях деревьев.

Многолетние корни древесных растений в результате длительной активности камбия нередко сильно утолщаются. Вторичная ксилема у таких корней сливается в сплошной цилиндр, окруженный снаружи кольцом камбия и сплошным кольцом вторичной флоэмы (рис. 4.11 ). По сравнению со стеблем границы годичных колец в древесине корня выражены значительно слабее, луб развит сильнее, сердцевинные лучи, как правило, шире.

Рис. 4.11. Поперечный срез корня ивы в конце первого вегетационного периода.

Специализация и метаморфозы корней. У большинства растений в одной и той же корневой системе отчетливо различаются ростовые и сосущие окончания. Ростовыеокончания обычно более мощные, быстро удлиняются и продвигаются вглубь почвы. Зона растяжения у них хорошо выражена, и апикальные меристемы работают энергично. Сосущие окончания, возникающие в большом количестве на ростовых корнях, удлиняются медленно, и их апикальные меристемы почти перестают работать. Сосущие окончания как бы останавливаются в почве и интенсивно ее «обсасывают».

У древесных растений различают толстые скелетные и полускелетные корни, на которых образуются недолговечные корневые мочки . В состав корневых мочек, непрерывно заменяющих друг друга, входят ростовые и сосущие окончания.

Если корни выполняют особые функции, их строение меняется. Резкое, наследственно закрепленное видоизменение органа, вызванное сменой функций, носит название метаморфоза . Видоизменения корней очень разнообразны.

Корни многих растений образуют симбиоз с гифами почвенных грибов, называемый микоризой («грибокорень»). Микориза образуется на сосущих корнях в зоне поглощения. Грибной компонент облегчает корням получение воды и минеральных элементов из почвы, часто гифы грибов заменяют корневые волоски. В свою очередь, гриб получает от растения углеводы и другие питательные вещества. Различают два основных типа микоризы. Гифы эктотрофной микоризы образуют чехол, окутывающий корень снаружи. Эктомикориза широко распространена у деревьев и кустарников. Эндотрофная микориза встречается в основном у травянистых растений. Эндомикориза находится внутри корня, гифы внедряются в клетки коровой паренхимы. Микотрофное питание очень широко распространено. Некоторые растения, например орхидные, вообще не могут существовать без симбиоза с грибами.

На корнях бобовых возникают особые образования – клубеньки , в которых поселяются бактерии из рода Rhizobium. Эти микроорганизмы способны усваивать атмосферный молекулярный азот, переводя его в связанное состояние. Часть веществ, синтезированных в клубеньках, усваивают растения, бактерии, в свою очередь, используют вещества, находящиеся в корнях. Этот симбиоз имеет большое значение для сельского хозяйства. Бобовые растения благодаря дополнительному источнику азота богаты белками. Они дают ценные пищевые и кормовые продукты и обогащают почву азотистыми веществами.

Очень широко распространены запасающие корни. Они обычно утолщены и сильно паренхиматизированы. Сильно утолщенные придаточные корни называют корневыми шишками , или корнеклубнями (георгин, некоторые орхидные). У многих, чаще двулетних, растений со стержневой корневой системой возникает образование, носящее название корнеплода . В образовании корнеплода принимают участие и главный корень, и нижняя часть стебля. У моркови почти весь корнеплод составлен корнем, у репы корень образует лишь самую нижнюю часть корнеплода (рис. 4.12).

Рис.4.12. Корнеплоды моркови (1, 2), репы (3, 4) и свеклы (5, 6, 7) (на поперечных разрезах ксилема черная; горизонтальным пунктиром показана граница стебля и корня).

Корнеплоды культурных растений возникли в результате длительного отбора. В корнеплодах сильно развита запасающая паренхима и исчезли механические ткани. У моркови, петрушки и других зонтичных паренхима сильно развита во флоэме; у репы, редьки и других крестоцветных – в ксилеме. У свеклы запасные вещества откладываются в паренхиме, образованной деятельностью нескольких добавочных слоев камбия (рис. 4.12 ).

У многих луковичных и корневищных растений образуются втягивающие , или контрактильные корни (рис. 4.13, 1 ). Они могут укорачиваться и втягивать побег в почву на оптимальную глубину на время летней засухи или зимних морозов. Втягивающие корни имеют утолщенные основания с поперечной морщинистостью.

Рис. 4.13. Метаморфозы корня : 1 – клубнелуковица гладиолуса с утолщенными у основания втягивающими корнями; 2 – дыхательные корни с пневматофорами у авиценнии (пр – зона прилива); 3 – воздушные корни орхидеи.

Рис. 4.14. Часть поперечного среза воздушного корня орхидеи : 1 – веламен; 2 – экзодерма; 3 – пропускная клетка.

Дыхательные корни, или пневматофоры (рис. 4.13, 2 ) образуются у некоторых тропических древесных растений, живущих в условиях недостатка кислорода (таксодиум, или болотный кипарис; растения мангровых зарослей, обитающие по болотистым берегам океанических побережий). Пневматофоры растут вертикально вверх и высовываются над поверхностью почвы. Через систему отверстий в этих корнях, связанных с аэренхимой, воздух поступает в подводные органы.

У некоторых растений для поддержания побегов в воздушной среде образуются дополнительные опорные корни. Они отходят от горизонтальных ветвей кроны и, достигнув поверхности почвы, интенсивно ветвятся, превращаясь в столбовидные образования, поддерживающие крону дерева (столбовидные корни баньяна) (рис. 4.15, 2). Ходульные корни отходят от нижних участков стебля, придавая стеблю устойчивость. Они образуются у растений мангровых зарослей, растительных сообществ, развивающихся на затопляемых во время прилива тропических берегах океанов (рис. 4.15, 3 ), а также у кукурузы (рис. 4.15, 1 ). У фикуса каучуконосного образуются досковидные корни. В отличие от столбовидных и ходульных, они являются по происхождению не придаточными, а боковыми корнями.

Рис. 4.15. Опорные корни : 1 – ходульные корни кукурузы; 2 – столбовидные корни баньяна; 3 – ходульные корни ризофоры (пр – зона прилива; от – зона отлива; ил – поверхность илистого дна).

M1.Часть организма, имеющая определенное строение и выполняющая определенные функции

а) клетка б) ткань в) орган г) система органов д) организм

2.Вегетативный орган

А) корень б) семя в) плод г) цветок д) соцветие

3.Придаточные корни отходят от

А) главного корня б) стебля в) боковых корней

4.Тип корневой системы, с хорошо выраженным главным корнем

А) стержневой б) мочковатый

5.Корневая система одуванчика

А) стержневая б) мочковатая

6.Выполняет защитную роль

7.Корневые волоски находятся в зоне

А) зона роста б) зона деления в) чехлик г) зона всасывания д) зона проведения

8.Процесс поглощения корнями растений необходимых питательных элементов из почвы

А) фотосинтез б) минеральное питание в) корневое давление г) размножение

9.Жизнено важные элементы для растения

10.Ограническое удобрение

А) компост б) азотное в) комбинированное г) калийное д) микроудобрение

11.При недостатке этого элемента растение отстает в росте и развитии, листья желтеют и опадают

А) азот б) фосфор в) калий г) азот, фосфор, калий д) свинец

12.Растение, образующее корнеплоды

А) морковь б) георгин в) кукуруза г) орхидея д) повилика

. Выберите верные утверждения:

1) Корень – специализированный орган почвенного питания
2) Корневые системы могут быть стержневыми, мочковатыми и придаточными
3) Боковые корни отходят от главного корня
4) Корень всасывает воду из почвы с помощью корневых волосков
5) Корневые волоски – это недоразвитые придаточные корни
6) Корнеплоды – плоды, образующиеся на корнях

Помогите пожалуйстаааа ответить на вопросы,не на все хотя бы на какие сможите.1)Двое школьников пришли на учебно-опытный участок

ухаживать за картофелем.Увидев,что почва очень сухая,один ушел домой и стал ждать,когда пойдет дождь,а другой стал окучивать растения.Кто из них поступил правильно?Почему?

2)Оказывается,почвы пустыни,тундры,северных районов России бедны перегноем,в то время как почвы черноземов,красноземов богаты перегноем.Почему?

3)Прополка-это удаление сорняков из посевов и посадок сельскохозяйственных культур.Казалось бы,простой вид работы,однако он требует определенных знаний.Объясните,почему при прополке посевов вручную не следует резко выдергивать сорняки из почвы.

4)Школьники на учебно-опытном участке поливали капусту.После полива один из них засыпали влажные лунки сухой землей,а другие посчитали,что это лишняя работа.Кто из учеников поступил правильно?Почему?

5)Замечено,что во время сильной бури ветер выкорчивает ели,а сосны ломает.Дайте объяснение этому явлению.

6)Установленно,что днина корней одного дерева ели достигает около 2 тысячи метров,а у сосны она в 6 раз больше.Почему?

7)Лесоводы обратили внимание на тот факт,что д разных лесов характерен определенный нобор видов растений,однако оказывается он "с возрастом леса" меняется.Почему?

8)Клубни картофеля хорошо сохраняются во время хранения.Опредилите,когда в клубне картофеля больше питательных веществ:в октябре или в мае.Почему?

10. Какие особые триплеты обязательно находятся между генами?

11. Какой тип нуклеиновой кислоты переносит наследственную информацию из клетки в клетку при размножении?

12. Сколько стадий включает в себя процесс биосинтеза белка?

13. Как называется процесс биосинтеза иРНК по матрице ДНК?

14. Где в клетке эукариот происходит транскрипция?

15. Где в клетке происходит трансляция?

16. Матрицей при транскрипции служит нуклеиновая кислота

17. Матрицей при трансляции служит нуклеиновая кислота

18. Какой основной фермент осуществляет транскрипцию?

19. Какой тип РНК служит матрицей при биосинтезе белка на рибосоме?

20. Как называется цепь ДНК, которая служит матрицей для синтеза иРНК?

21. Как называется цепь ДНК, которая комплементарна матричной цепи для синтеза иРНК?

22. Какой тип РНК содержит кодон?

23. Какой тип РНК содержит антикодон?

24. Какой тип РНК соединяет аминокислоты в белок?

25. Какой тип РНК переносит наследственную информацию от ДНК к месту синтеза белка?

26. Какой тип РНК переносит аминокислоты к месту синтеза белка?

27. Какой тип РНК переносит наследственную информацию из ядра в цитоплазму?

28. У каких организмов процессы транскрипции и трансляции не разделяются во времени и в пространстве?

29. Сколько нуклеотидов иРНК включает в себя «функциональный центр» рибосомы?

30. Сколько аминокислот должно одновременно находиться в большой субъединице рибосомы?

31. Сколько генов могут включать в себя иРНК прокариот?

32. Сколько генов могут включать в себя иРНК эукариот?

33. Когда рибосома доходит до СТОП-кодона, она присоединяет к последней аминокислоте молекулу

34. Если на одной иРНК одновременно находятся много рибосом, такая структура называется

35. Для биосинтеза белка, как и для других процессов в клетке, используется энергия

Корень – это подземный орган растения.Основные функции корня:

Опорная: корни закрепляют растение в почве и удерживают на протяжении всей жизни;

Питательная: через корни растение получает воду с растворенными минеральными и органическими веществами;

Запасающая: в некоторых корнях могут накапливаться питательные вещества.

Виды корней

Различают главные, придаточные и боковые корни. При прорастании семени первым появляется зародышевый корешок, который превращается в главный. На стеблях могут появляться придаточные корни. От главных и придаточных корней отходят боковые корни. Придаточные корни обеспечивают растение дополнительным питанием и выполняют механическую функцию. Развиваются при окучивании, например, томатов и картофеля.

Функции корней:

Всасывают из почвы воду и растворенные в ней минеральные соли, транспортирует их вверх по стеблю, листьям и репродуктивным органам. Функцию всасывания выполняют корневые волоски (или микоризы), расположенные в зоне всасывания.

Закрепляют растение в почве.

В корнях откладываются в запас питательные вещества (крахмал, инулин и др.).

Осуществляется симбиоз с почвенными микроорганизмами -бактериями и грибами.

Происходит вегетативное размножение многих растений.

Некоторые корни выполняют функцию дыхательного органа (монстера, филодендрон и др.).

Корни ряда растений выполняют функцию "ходульных" корней (фикус баньян, панданус и др.).

Корень способен к метаморфозам (утолщения главного корня образуют "корнеплоды" у моркови, петрушки и др.; утолщения боковых или придаточных корней образуют корневые клубни у георгин, земляных орешков, чистяка и др., укорачивание корней у луковичных растений). Корни одного растения – это корневая система. Корневая система бывает стержневая и мочковатая. В стержневой корневой системе хорошо развит главный корень. Ее имеет большинство двудольных растений (свекла, морковь). У многолетних растений главный корень может отмирать, а питание происходит за счет боковых корней, поэтому главный корень можно проследить только у молодых растений.Мочковатая корневая система образована только придаточными и боковыми корнями. В ней нет главного корня. Такую систему имеют однодольные растения, например, злаки, лук.Корневые системы занимают много места в почве. Например, у ржи корни распространяются вширь на 1-1,5 м и проникают вглубь до 2 м.Метаморфозы корневой системы, связанные с условиями обитания:*Воздушные корни.*Ходульные корни.*Дыхательные корни.*Досковидные корни.*Корни – подпорки (столбовидные).*Корни – прицепки.

10.Метаморфозы корня и выполняемые ими функции. Влияние экологических факторов на формирование и развитие корневой системы растений. Микориза. Грибокорень. Прикрепляется к растениям и находятся в состоянии симбиоза. Грибы, живущие на корнях используют углеводы, которые образуются в результате фотосинтеза; в свою очередь доставляют воду и минеральные вещества.

Клубеньки. Корни бобовых растений утолщаются, образуя выросты, за счёт бактерии из рода Rhizobium. Бактерии способны фиксировать атмосферный азот, переводя его в связанное состояние, часть этих соединений усваивает высшее растение. Благодаря этому почва обогащается азотистыми веществами.Втягивающие (контрактильные) корни. Такие корни способны втягивать органы возобновления в почву на определенную глубину. Втягивание (геофилия) происходит за счёт сокращения типичных (главного, боковых, придаточных корней) или только специализированных контрактильных корней..Досковидные корни. Это крупные плагиотропные боковые корни, по всей длине которых образуется плоский вырост. Такие корни характерны для деревьев верхнего и среднего ярусов тропического дождевого леса. Процесс образования досковидного выроста начинается у наиболее старой части корня – базальной.Столбовидные корни. Характерны для тропических фикуса бенгальского, фикуса священного и др. Некоторые из воздушных корней, свисающих вниз, проявляют положительный геотропизм – они достигают почвы, внедряются в нее и ветвятся, формируя подземную корневую систему. В последствии они превращаются в мощные столбовидные опоры.Ходульные и дыхательные корни. Растения мангры, развивающие ходульные корни, - ризофоры. Ходульные корни – это метаморфизированные придаточные корни. Они образуются у сеянцев на гипокотиле, а затем на стебле главного побега.Дыхательные корни. Основным приспособлением к жизни на зыбких илистых почвах в условиях дефицита кислорода является сильно разветвленная корневая система с дыхательными корнями – пневматофорами. Строение пневматофоров связано с выполняемой ими функцией – обеспечением газообмена корней и снабжением их внутренних тканей кислородом.Воздушные корни образуются у многих тропических травянистых эпифитов. Их воздушные корни свободно висят в воздухе и приспособлены к поглощению влаги в виде дождя. Для этого из протодермы образуется веламен, он и всасывает воду.Запасающие корни. Корневые клубни образуют вследствие метаморфоза боковых и придаточных корней. Корневые клубни функционируют только как запасающие органы. Эти корни совмещают функции запасания и поглощения почвенных растворов. Корнеплод - осевая ортотропная структура, образованная утолщенным гипокотилем (шейкой), базальной частью главного корня и вегетативной частью главного побега. Однако, деятельность камбия ограничена. Далее утолщение корня продолжается за счет перицикла. Происходит добавления камбия и образование кольца меристематической ткани.

Экологический фактор может ограничить их рост и развитие. Например, при регулярном возделывании почвы, ежегодном выращивании на ней какой-либо культуры, истощается запас минеральных солей, поэтому рост растений в этом месте прекращается, либо ограничивается. Даже если все другие условия, необходимые для их роста и развития присутствуют. Данный фактор обозначается, как ограничивающий.
Например, ограничивающим фактором для водных растений чаще всего является кислород. Для солнечных растений, например, подсолнечника, таким фактором чаще всего становится солнечный свет (освещение).
Совокупность таких факторов и определяет условия развития растений, их рост и возможность существования в определенной местности. Хотя, как и все живые организмы, они могут приспосабливаться к условиям обитания. Давайте рассмотрим, как это происходит:
Засуха, высокие температуры
Растения, произрастающие в жарком, засушливом климате, например, пустыне обладают мощной корневой системой, чтобы уметь добывать воду. Например, кустарники, относящиеся к роду джузгун, обладают 30-метровыми корнями, уходящими вглубь земли. А вот у кактусов корни не глубокие, зато широко раскинувшиеся под поверхностью почвы. Они собирают воду с большой поверхности почвы во время редких, коротких дождей.
Собранную воду необходимо сохранить. Поэтому некоторые растения - суккуленты длительное время сберегают запас влаги в листьях, ветвях, стволах.
Среди зеленых обитателей пустыни есть такие, которые научились выживать даже при многолетней засухе. Некоторые, которые имеют название эфемеры, живут всего несколько дней. Их семена прорастают, зацветают и плодоносят сразу, как пройдет дождь. В это время пустыня выглядит очень красиво - она расцветает.
А вот лишайники, некоторые плауны и папоротники, могут жить в обезвоженном состоянии долгое время, пока не выпадет редкий дождь.
Холодные,влажные условия тундры
Тут растения приспосабливаются к очень суровым условиям. Даже летом здесь редко бывает выше 10 градусов тепла. Лето длится менее 2 мес. Но даже в этот период бывают заморозки.
Осадков выпадает мало, поэтому снежный покров, защищающий растения, небольшой. Сильный порыв ветра может полностью оголить их. Но вечная мерзлота задерживает влагу и недостатка в ней нет. Поэтому корни растений, произрастающих в таких условиях поверхностные. От холода растения защищают толстая кожица листьев, восковой налёт на них, пробка на стебле.
От того, что летом в тундре полярный день, фотосинтез в листьях продолжается круглые сутки. Поэтому за это время они успевают накопить достаточный, прочный запас необходимых веществ.
Интересно, что деревья, растущие в условиях тундры, дают семена, которые произрастают один раз за 100 лет. Произрастают семена лишь тогда, когда наступают подходящие условия - после двух теплых летних сезонов подряд. Многие приспособились размножаться вегетативно, например, мхи и лишайники.
Солнечный свет
Растениям очень важен свет. Его количество влияет на их внешний вид и внутреннее строение. Например, лесные деревья, которым достаточно света вырастают высокими, имеют менее раскидистую крону. Те же, которые находятся в их тени, развиваются хуже, более угнетены. Их кроны более раскидисты, а листья располагаются горизонтально. Это нужно для того, чтобы уловить как можно больше солнечного света. Там, где солнца вполне достаточно, листья располагаются вертикально, чтобы избежать перегревания.

11. Внешнее и внутреннее строение корня. Рост корня. Поглощение корнями воды из почвы . Корень - основной орган высшего растения. Корень - осевой орган, обычно цилиндрической формы, с радиальной симметрией, обладающий геотропизмом. Растет до тех пор, пока сохраняется верхушечная меристема, покрытая корневым чехликом. На корне в отличие от побега никогда не образуются листья, зато, как и побег, корень ветвится, образуя корневую систему .

Корневая система - это совокупность корней одного растения. Характер корневой системы зависит от соотношения роста главного, боковых и придаточных корнейВ корневой системе различают главный(1), боковые(2) и придаточные корни(3)

Главный корень развивается из зародышевого корня.

Придаточными называют корни, развивающиеся на стеблевой части побега. Придаточные корни могут вырастать и на листьях.

Боковые корни возникают на корнях всех видов (главном, боковом и придаточны

Внутреннее строение корня. На кончике корня находятся клетки образовательной ткани. Они активно делятся. Этот участок корня длиной около 1 мм называют зоной деления . Зона деления корня снаружи защищена от повреждений корневым чехликом. Клетки чехлика выделяют слизь, которая обволакивает кончик корня, что облегчает его прохождение в почве.

Выше зоны деления находится гладкий участок корня длиной около 3-9 мм. Здесь клетки уже не делятся, но сильно вытягиваются (растут) и тем увеличивают длину корня - это зона растяжения , или зона роста корня.

Выше зоны роста находится участок корня с корневыми волосками- это длинные выросты клеток наружного покрова корня. С их помощью корень поглощает (всасывает) из почвы воду с растворенными минеральными солями. Корневые волоски при этом работают как маленькие насосы. Вот почему зону корня с корневыми волосками называют зоной всасывания или зоной поглощения .Зона всасывания занимает на корне 2-3 см. Живут корневые волоски 10-20 дней. Клетка корневого волоска окружена тонкой оболочкой и содержит цитоплазму, ядро и вакуоль с клеточным соком.Под кожицей находятся крупные округлые клетки с тонкими оболочками - кора. Внутренний слой коры (эндодерма) образован клетками с опробковевшими оболочками. Клетки эндодермы не пропускают воду. Среди них есть живые тонкостенные клетки - пропускные. Через них вода из коры поступает в проводящие ткани, которые расположены в центральной части стебля под эндодермой. Проводящие ткани в корне образуют продольные тяжи, где участки ксилемы чередуются с участками флоэмы. Элементы ксилемы расположены напротив пропускных клеток. Промежутки между ксилемой и флоэмой заполнены живыми клетками паренхимы. Проводящие ткани образуют центральный, или осевой цилиндр. С возрастом между ксилемой и флоэмой возникает образовательная ткань - камбий. Благодаря делению клеток камбия образуются новые элементы ксилемы и флоэмы, механической ткани, что обеспечивает рост корня в толщину. Корень при этом приобретает дополнительные функции - опоры и запасания питательных веществ.Выше находится зона проведения корня, по клеткам которой вода и минеральные соли, поглощенные корневыми волосками, передвигаются к стеблю. Зона проведения - самая длинная и прочная часть корня. Здесь уже имеется хорошо сформированная проводящая ткань.По клеткам проводящей ткани к стеблю поднимается вода с растворенными солями - это восходящий ток , а от стебля и листьев к корню передвигаются органические вещества, нужные для жизнедеятельности клеток корня, - это нисходящий ток .Корни чаще всего имеют форму: цилиндрическую (у хрена); коническую или конусовидную (у одуванчика); нитевидную (у ржи, пшеницы, лука).

Из почвы вода поступает в корневые волоски осмотическим путем, проходя через их оболочки. При этом происходит наполнение клетки водой. Часть воды поступает в вакуоль и разбавляет клеточный сок. Таким образом, в соседних клетках создаются различные плотность и давление. Клетка с более концентрированным вакуолярным соком берет часть воды из клетки с разбавленным вакуолярным соком. Эта клетка посредством осмоса по цепочке передает воду другой соседней клетке. Кроме того, часть воды проходит по межклетникам, как по капиллярам между клетками коры. Достигнув эндодермы, вода устремляется через пропускные клетки в ксилему. Поскольку площадь поверхности пропускных клеток эндодермы намного меньше площади поверхности кожицы корня, на входе в центральный цилиндр создается значительное давление, что позволяет воде проникать в сосуды ксилемы. Это давление получило название корневого. Благодаря корневому давлению вода не только поступает в центральный цилиндр, но и поднимается в стебель на значительную высоту.

Рост корня:

Корень растения растет в течение всей его жизни. В результате он постоянно увеличивается, углубляясь в почву и отходя в стороны от стебля. Хотя корни обладают неограниченной возможностью роста, они почти никогда не имеют возможности использовать ее в полной мере. В почве корням растения мешают корни других растений, может быть недостаточно воды и питательных веществ. Однако, если выращивать растение искусственно в очень благоприятных для него условиях, то оно способно развивать корни огромной массы.

Корни растут своей верхушечной часть, которая находится в самом низу корня. При удалении верхушки корня его рост в длину прекращается. Однако начинается образование множества боковых корней.

Корень всегда растет вниз. Независимо от того, какой стороной будет повернуть семя, корень проростка начнет расти вниз.Поглощение корнями воды из почвы:Вода и минеральные вещества поглощаются клетками эпидермиса вблизи кончика корня. Многочисленные корневые волоски, представляющие собой выросты эпидермальных клеток, проникают в трещины между почвенными частицами и во много раз увеличивают поглощающую поверхность корня.

12. Побег и его функции. Строение и типы побегов. Ветвление и нарастание побегов. Побег - это неразвлетвенный стебель с расположенными на ней листьями и почками - зачатками новых побегов, возникающими в определенном порядке. Эти зачатки новых побегов обеспечивают нарастание побега и его ветвление.Побеги бывают вегетативные и спороносные

К функциям вегетативных побегов относятся: побег служит для укрепления на нем листьев, обеспечивает передвижениеминеральных веществ к листьям и отток органических соединений, служит органом размножения (земляника, смородина, тополь),Служиторганом запаса (клубень картофеля)Спороносные побеги выполняют функцию размножения.

Моноподиальное -наростание идет за счет верхушечной почки

Симподиальное -рост побега продолжается за счетближайшей боковой почки

Ложнодихотомическое -после отмирания верхушечной почки происходит нарастантие побегов (сирень, клен)

Дихотомическое- из верхушечной почки образуются две боковые, дающие два побега

Кущение– это ветвление, при котором крупные боковые побеги вырастают из самых нижних почек, находящихся у поверхности земли или даже под землёй. В результате кущения формируется куст. Очень плотные многолетние кусты называют дерновинами.

Строение и типы побегов:

Типы:

Главный побег – побег, развившийся из почки зародыша семени.

Боковой побег – побег, появившийся из боковой пазушной почки, за счёт которого происходит ветвление стебля.

Удлинённый побег – побег, с удлинёнными междоузлиями.

Укороченный побег – побег, с укороченными междоузлиями.

Вегетативный побег – побег, несущий листья и почки.

Генеративный побег – побег, несущий репродуктивные органы – цветки, затем плоды и семена.

Ветвление и нарастание побегов:

Ветвление – это образование боковых побегов из пазушных почек. Сильно разветвлённая система побегов получается, когда на одном побеге вырастают боковые, а на них, следующие боковые и так далее. Таким способом захватывается как можно больше среды для воздушного питания.

Нарастание побегов в длину осуществляется за счет верхушечных почек, а образование боковых побегов происходит за счет боковых (пазушных) и придаточных почек

13. Строение, функции и типы почек. Разнообразие почек, развитие побега из почки. Почка – зачаточный, ещё не развернувшийся побег, на верхушке которого находится конус нарастания.

Вегетативная (листовая почка) – почка, состоящая из укороченного стебля с зачаточными листьями и конуса нарастания.

Генеративная (цветочная) почка – почка, представленная укороченным стеблем с зачатками цветка или соцветия. Цветочная почка, заключающая 1 цветок, называется бутоном. Типы почек .

У растений существует несколько типов почек. Их принято делить по нескольким критериям.

1. По происхождению:* пазушные или экзогенные (возникают из вторичных бугорков), формируются только на побеге* придаточные или эндогенные (возникают из камбия, перицикла или паренхимы). Пазушная почка возникает только на побеге и ее можно узнать по наличию листа или листового рубца при ее основании. Придаточная почка возникает на любом органе растения, являясь резервной при различных повреждениях.

2. По расположению на побеге:* верхушечные (всегда пазушные)* боковые (могут быть пазушные и придаточные).

3) По времени действия:* летние , функционирующие* зимующие , т.е. находящиеся в состоянии зимнего покоя* спящие, т.е. находящиеся в состоянии длительного даже многолетнего покоя.

По внешнему облику эти почки хорошо различаются. У летних почек цвет светло-зеленый, конус нарастания удлиненный, т.к. идет интенсивный рост верхушечной меристемы и формирование листьев. Снаружи летняя почка покрыта зелеными молодыми листочками. С наступлением осени рост в летней почке замедляется, а затем прекращается. Наружные листочки прекращают рост и специализируются в защитные структуры - почечные чешуи. Эпидермис у них одревесневает, а в мезофилле образуются склереиды и вместилища с бальзамами и смолами. Почечные чешуи, склеенные между собой смолами, герметически закрывают доступ воздуха внутрь почки. Весной следующего года зимующая почка превращается в активную, летнюю, а та – в новый побег. При пробуждении зимующей почки начинается деление клеток меристемы, удлинение междоузлий, в результате почечные чешуи опадают, оставляя на стебле листовые рубцы, совокупность которых образует почечное кольцо (след от зимующей или спящей почки). По этим кольцам можно определить возраст побега. Часть пазушных почек остается в состоянии покоя. Это живые почки, они получают питание, но не растут, поэтому их называют спящими. Если расположенные выше их побеги отмирают, то спящие почки могут «проснуться» и дать новые побеги. Эту способность используют в сельскохозяйственной практике и в цветоводстве при формировании внешнего облика растений

14. Анатомическое строение стебля травянистых двудольных и однодольных растений. Строение стебля однодольного растения. Важнейшее значение из однодольных растений имеют злаки, стебель которых называется соломиной. При незначительной толщине соломина обладает значительной прочностью. Она состоит из узлов и междоузлий. Последние бывают полые внутри и наибольшую длину имеют в верхней части, а наименьшую в нижней. Наиболее нежные части соломины находятся над узлами. В этих местах имеется образовательная ткань, поэтому злаки растут своими междоузлиями. Такой рост злаков называется вставочным ростом. В стеблях однодольных растений хорошо выражено пучковое строение. Сосудисто-волокнистые пучки закрытого типа (без камбия) распределяются по всей толщине стебля. С поверхности стебель покрыт однослойной эпидермой, которая впоследствии одревесневает, образуя слой кутикулы. Расположенная непосредственно под эпидермой первичная кора, состоит из тонкого слоя живых паренхимных клеток с хлорофилловыми зернами. В глубь от паренхимных клеток находится центральный цилиндр, снаружи начинающийся механической тканью склеренхимы перициклического происхождения. Склеренхима придает стеблю прочность. Основная часть центрального цилиндра состоит из крупных клеток паренхимы с межклетниками и беспорядочно расположенных сосудисто-волокнистых пучков. Форма пучков на поперечном срезе стебля овальная; все участки древесины тяготеют ближе к центру, а лубяные участки - к поверхности стебля. Камбия в сосудисто-волокнистом пучке нет, и стебель не может утолщаться. Каждый пучок снаружи окружен механической тканью. Максимальное количество механической ткани сосредоточено вокруг пучков возле поверхности стебля.

Анатомическое строение стеблей двудольных растений уже в раннем возрасте отличается от строения однодольных (рис.1). Сосудистые пучки здесь расположены в один круг. Между ними находится основная паренхимная ткань, образующая сердцевинные лучи. Основная паренхима расположена также внутрь от пучков, где образует сердцевину стебля, которая у некоторых растений (лютик, дудник и др.) превращается в полость, у других (подсолнечник, конопля и др.) хорошо сохраняется. Особенности строения сосудисто-волокнистых пучков двудольных растений заключаются в том, что они открытые, то есть имеют пучковый камбий , состоящий из нескольких правильных рядов нижних делящихся клеток; внутрь от них возникают клетки, из которых образуется вторичная древесина, а кнаружи – клетки, из которых образуется вторичный луб (флоэма) . Паренхимные клетки основной ткани, окружающие пучок, часто заполненные запасными веществами; различные сосуды, проводящие воду; камбиальные клетки, из которых возникают новые элементы пучка; ситовидные трубки, проводящие органические вещества, и механические клетки (лубяные волокна), придающие прочность пучку. Мертвыми элементами являются водопроводящие сосуды и механические ткани, а все остальные – живые клетки, имеющие внутри протопласт . От деления клеток камбия в радиальном направлении (то есть перпендикулярно поверхности стебля) камбиальное кольцо удлиняется, а от деления их в тангентальном направлении (то есть параллельно поверхности стебля) утолщается стебель. В сторону древесины откладывается в 10-20 раз и больше клеток, чем в сторону луба, а потому древесина нарастает гораздо быстрее, чем луб.
Классы Двудольные и Однодольные делятся на семейства. Растения каждого из семейств имеют общие признаки. У цветковых растений основными признаками являются строение цветка и плода, тип соцветия, а также особенности внешнего и внутреннего строения вегетативных органов.

15. Анатомическое строение стебля древесных двудольных растений. Годичные побеги липы покрыты эпидермой.К осени они одревеснивают и эпидерма сменяется пробкой.В течении вегетационного периода под эпидермой закладывается пробковый камбий,котрый к наружи формирует пробку,а внутрь-клетки феллодермы.Эти три покровные ткани образуют покровный комплекс перидермы.Клетки эпидермы постепенно в течение 2-3 лет сшелушиваются и отмирают.Под перидермой расположена первичная кора.наружные слои представлены клетками пластинчатой хлорофиллоноснойколленхизмы,затем идет хлорофиллоносноя паренхима и слабо выраженная эндодерма.

Большую часть стебля составляют ткани,обрвзованныедеятельностюкамбия.Границы коры и древесины проходит по камбию.Все ткани, лежащие к наружи от камбия,называются корой.Кора бывает первичная и вторичная.Первичная уже описана,вторичную кору состовляетфлоэма,илилуб,исердцевиднныелучи.Флоэма трапециевидной формы.а сердцевинные лучи представлены в виде треугольников,вершиныкоторыъх сходятся к центру стебля до сердцевины.

Сердцевинные лучи наскозь пронизывают древесину.Это первичные сердцевинные лучи,по ним в рациональном направлении продвигаются вода и органические вещества.Сердцевинные лучи представлены паренхимнымиклетками.внутри которых к осени откладываются запасные питательные вещества(крахмал),расходуемые весной на рост молодых побегов.

Во флоэмме чередуются прослойки твердого луба(лубяные волокна)и мягкого(живые тонкостенные элементы).Лубяные (слеренхимные)волокна луба представлены мертвыми прозенхимными клетками с толстыми одревесневшими стенками.Мягкий луб состоит из ситовидных трубок с клетками-спутницами(проводящая ткань)и лубяной паренхимы,в которой накапливаются питательные вещества (углеводы,жиры и др.)Весной эти вещества расходуются на рост побегов.По ситовидным трубкам передвигаются органические вещества.Весной при порезе коры сок вытекает наружу.Камбий представлен одни плотным кольцом из тонкостенных пряымоугольных клеток с крупныи ядром и цитоплазмой.Осенью клетки камбия становятся толстостенными,и его деятельность прекрвщается.

К центру стебля внутрь от камбия образуется древесина,состоящая из сосудов(трахей),трахеид,древесинной паренхимы и древесиной склеренхимы(либриформ).Либриформ представляет собой совокупность узких толстостенных и одревесневших клеток механической ткани.Древесина откладывается в виде годичных колец(сочетание весенних и осенних элементов древесины)более широких весной и летом и более узких осенью,а также в засушливое лето.На поперечном спиле дерева по числу годичных колец можно определить относительный возраст дерева.Весной в период сокодвижения по сосудам древесины поднимается вода с растворенными минеральными солями.

В центральной части стебля расположена сердцевина,состоящая из паренхимных клеток и окруженная мелкими сосудами первичной древесины.

16. Лист, его функции, части листа. Разнообразие листьев. Снаружи лист покрыт кожицей . Она образована слоем прозрачных клеток покровной ткани, плотно прилегающих друг к другу. Кожица защищает внутренние ткани листа. Стенки ее клеток прозрачны, что позволяет свету легко проникать внутрь листа.

На нижней поверхности листа, среди прозрачных клеток кожицы, находятся очень мелкие парные зеленые клетки, между которыми есть щель. Пару замыкающих клеток иустьичную щель между ними называют устьицем . Раздвигаясь и смыкаясь, эти две клетки то открывают, то закрывают устьице. Через устьице происходит газообмен и испаряется влага.

При недостаточном водоснабжении растения устьица закрыты. С поступлением воды в растение они открываются.

Лист - боковой плоский орган растения, который выполняет функции фотосинтеза, транспирации и газообмена. В клетках листа находятся хлоропласты с хлорофиллом, в которых на свету из воды и углекислого газа осуществляется "производство" органических веществ - фотосинтез.

Функции Вода для фотосинтеза поступает из корня. Часть воды листьями испаряется, чтобы предотвратить, перегрев растений солнечными лучами. При испарении расходуется излишек тепла и растение не перегревается. Испарение воды листьями называется транспирацией.

Из воздуха листья поглощают углекислый газ, а выделяют кислород, образующийся при фотосинтезе. Этот процесс называется газообменом.

Части листа

Внешнее строение листа. У большинства растений лист состоит из пластинки и черешка. Листовая пластинка - это расширенная пластинчатая часть листа, отсюда и ее название. Листовая пластинка выполняет основные функции листа. Внизу она переходит в черешок - суженную стеблевидную часть листа.

При помощи черешка лист прикрепляется к стеблю. Такие листья называют черешковыми. Черешок может менять свое положение в пространстве, а вместе с ним меняет положение и листовая пластинка, которая оказывается в условиях наиболее благоприятного освещения. В черешке проходят проводящие пучки, которые связывают сосуды стебля с сосудами листовой пластинки. Благодаря упругости черешка листовая пластинка легче выдерживает удары по листу капель дождя, града, порывов ветра. У некоторых растений у основания черешка находятся прилистники, имеющие вид пленок, чешуек, маленьких листочков (ива, шиповник, боярышник, акация белая, горох, клевер и др.). Основная функция прилистников - защита молодых развивающихся листьев. Прилистники могут быть зелеными, и тогда они подобны листовой пластинке, но обычно гораздо меньших размеров. У гороха, чины луговой и многих других растений прилистники сохраняются в течение всей жизни листа и выполняют функцию фотосинтеза. У липы, березы, дуба пленчатые прилистники опадают в стадии молодого листа. У некоторых растений - караганы древовидной, акации белой - они видоизменены в колючки и выполняют защитную функцию, охраняя растения от повреждений животными.

Существуют растения, листья которых не имеют черешков. Такие листья называются сидячими. Они прикрепляются к стеблю основанием листовой пластинки. Сидячие листья у алоэ, гвоздики, льна, традесканции. У некоторых растений (рожь, пшеница и др.) основание листа разрастается и охватывает стебель. Такое разросшееся основание называется влагалищем.

Занимаясь посадками и выращиванием растений, необходимо знать тип корневой системы каждого выращиваемого растения, чтобы обеспечить ему хорошие условия роста, развития и плодоношения, а также чтобы правильно сочетать растения в смешанных интенсивных посадках.

Помимо основного корня многие растения имеют боковые и придаточные корни. Все корни растения образуют корневую систему . Если главный корень мал, а придаточные корни велики, корневую систему называют мочковатой .

Корневую систему называют стержневой , если главный корень значительно преобладает.

Если хорошо развиты и главный корень, и придаточные корни, то корневую систему называют смешанной .

Корень

Историческое развитие корня

Филогенетически корень возник позже стебля и листа - в связи с переходом растений к жизни на суше и вероятно, произошёл от корнеподобных подземных веточек. У корня нет ни листьев, ни в определённом порядке расположенных почек. Для него характерен верхушечный рост в длину, боковые разветвления его возникают из внутренних тканей, точка роста покрыта корневым чехликом. Корневая система формируется на протяжении всей жизни растительного организма. Иногда корень может служить местом отложения в запас питательных веществ. В таком случае он видоизменяется.

Виды корней

Главный корень образуется из зародышевого корешка при прорастании семени. От него отходят боковые корни.

Придаточные корни развиваются на стеблях и листьях.

Боковые корни представляют собой ответвления любых корней.

Каждый корень (главный, боковые, придаточные) обладает способностью к ветвлению, что значительно увеличивает поверхность корневой системы, а это способствует лучшему укреплению растения в почве и улучшению его питания.

Типы корневых систем

Различают два основных типа корневых систем: стержневая, имеющая хорошо развитый главный корень, и мочковатая. Мочковатая корневая система состоит из большого числа придаточных корней, одинаковых по величине. Вся масса корней состоит из боковых или придаточных корешков и имеет вид мочки.

Сильно разветвлённая корневая система образует огромную поглощающую поверхность. Например,

  • общая длина корней озимой ржи достигает 600 км;
  • длина корневых волосков – 10 000 км.;
  • общая поверхность корней – 200 м 2 .

Это во много раз превышает площадь надземной массы.

Если у растения хорошо выражен главный корень и развиваются придаточные корни, то формируется корневая система смешанного типа (капуста, помидор).

Внешнее строение корня. Внутреннее строение корня

Зоны корня

Корневой чехлик

Корень растёт в длину своей верхушкой, где находятся молодые клетки образовательной ткани. Растущая часть покрыта корневым чехликом, защищающим кончик корня от повреждений, и облегчает продвижение корня в почве во время роста. Последняя функция осуществляется благодаря свойству внешних стенок корневого чехлика покрываться слизью, что уменьшает трение между корнем и частичками почвы. Могут даже раздвигать частички почвы. Клетки корневого чехлика живые, часто содержат зёрна крахмала. Клетки чехлика постоянно обновляются за счёт деления. Участвует в положительных геотропических реакциях (направление роста корня к центру Земли).

Клетки зоны деления активно делятся, протяженность этой зоны у разных видов и у разных корней одного и того же растения неодинакова.

За зоной деления расположена зона растяжения (зона роста). Протяжённость этой зоны не превышает нескольких миллиметров.

По мере завершения линейного роста наступает третий этап формирования корня – его дифференциация, образуется зона дифференциации и специализации клеток (или зона корневых волосков и всасывания). В этой зоне уже различают наружный слой эпиблемы (ризодермы) с корневыми волосками, слой первичной коры и центральный цилиндр.

Строение корневого волоска

Корневые волоски – это сильно удлинённые выросты наружных клеток, покрывающих корень. Количество корневых волосков очень велико (на 1 мм 2 от 200 до 300 волосков). Их длина достигает 10 мм. Формируются волоски очень быстро (у молодых сеянцев яблони за 30-40 часов). Корневые волоски недолговечны. Они отмирают через 10-20 дней, а на молодой части корня отрастают новые. Это обеспечивает освоение корнем новых почвенных горизонтов. Корень непрерывно растёт, образуя всё новые и новые участки корневых волосков. Волоски могут не только поглощать готовые растворы веществ, но и способствовать растворению некоторых веществ почвы, а затем всасывать их. Участок корня, где корневые волоски отмерли, некоторое время способен всасывать воду, но затем покрывается пробкой и теряет эту способность.

Оболочка волоска очень тонкая, что облегчает поглощение питательных веществ. Почти всю клетку волоска занимает вакуоль, окружённая тонким слоем цитоплазмы. Ядро находится в верхней части клетки. Вокруг клетки образуется слизистый чехол, который содействует склеиванию корневых волосков с частицами почвы, что улучшает их контакт и повышает гидрофильность системы. Поглощению способствует выделение корневыми волосками кислот (угольной, яблочной, лимонной), которые растворяют минеральные соли.

Корневые волоски играют и механическую роль – они служат опорой верхушке корня, которая проходит между частичками почвы.

Под микроскопом на поперечном срезе корня в зоне всасывания видно его строение на клеточном и тканевом уровнях. На поверхности корня – ризодерма, под ней – кора. Наружный слой коры – экзодерма, вовнутрь от неё – основная паренхима. Её тонкостенные живые клетки выполняют запасающую функцию, проводят растворы питательных веществ в радиальном направлении – от всасывающей ткани к сосудам древесины. В них же происходит синтез ряда жизненно важных для растения органических веществ. Внутренний слой коры – эндодерма. Растворы питательных веществ, поступающие из коры в центральный цилиндр через клетки эндодермы, проходят только через протопласт клеток.

Кора окружает центральный цилиндр корня. Она граничит со слоем клеток, долго сохраняющих способность к делению. Это перицикл. Клетки перицикла дают начало боковым корням, придаточным почкам и вторичным образовательным тканям. Вовнутрь от перицикла, в центре корня, находятся проводящие ткани: луб и древесина. Вместе они образуют радиальный проводящий пучок.

Проводящая система корня проводит воду и минеральные вещества из корня в стебель (восходящий ток) и органические вещества из стебля в корень (нисходящий ток). Состоит она из сосудисто-волокнистых пучков. Основными слагаемыми частями пучка являются участки флоэмы (по ним вещества передвигаются к корню) и ксилемы (по которым вещества передвигаются от корня). Основные проводящие элементы флоэмы – ситовидные трубки, ксилемы – трахеи (сосуды) и трахеиды

Процессы жизнедеятельности корня

Транспорт воды в корне

Всасывание воды корневыми волосками из почвенного питательного раствора и проведение её в радиальном направлении по клеткам первичной коры через пропускные клетки в эндодерме к ксилеме радиального проводящего пучка. Интенсивность поглощения воды корневыми волосками называется сосущей силой (S), она равна разнице между осмотическим (P) и тургорным (T) давлением: S=P-T.

Когда осмотическое давление равно тургорному (P=T), то S=0, вода перестаёт поступать в клетку корневого волоска. Если концентрация веществ почвенного питательного раствора будет выше, чем внутри клетки, то вода будет выходить из клеток и наступит плазмолиз – растения завянут. Такое явление наблюдается в условиях сухости почвы, а также при неумеренном внесении минеральных удобрений. Внутри клеток корня сосущая сила корня возрастает от ризодермы по направлению к центральному цилиндру, поэтому вода движется по градиенту концентрации (т. е. из места с большей её концентрацией в место с меньшей концентрацией) и создаёт корневое давление, которое поднимает столбик воды по сосудам ксилемы, образуя восходящий ток. Это можно обнаружить на весенних безлистных стволах, когда собирают «сок», или на срезанных пнях. Истекание воды из древесины, свежих пней, листьев, называется «плачем» растений. Когда распускаются листья, то они тоже создают сосущую силу и притягивают воду к себе – образуется непрерывный столбик воды в каждом сосуде – капиллярное натяжение. Корневое давление является нижним двигателем водного тока, а сосущая сила листьев – верхним. Подтвердить это можно с помощью несложных опытов.

Всасывание воды корнями

А влияет ли температура воды на интенсивность всасывания корнем воды?

Температура сильно влияет на работу корня.

Тёплая вода активно поглощается корнями.

Минеральное питание

Физиологическая роль минеральных веществ очень велика. Они являются основой для синтеза органических соединений, а также факторами, которые изменяют физическое состояние коллоидов, т.е. непосредственно влияют на обмен веществ и строение протопласта; выполняют функцию катализаторов биохимических реакций; воздействуют на тургор клетки и проницаемость протоплазмы; являются центрами электрических и радиоактивных явлений в растительных организмах.

Установлено, что нормальное развитие растений возможно только при наличии в питательном растворе трёх неметаллов – азота, фосфора и серы и – и четырёх металлов – калия, магния, кальция и железа. Каждый из этих элементов имеет индивидуальное значение и не может быть заменён другим. Это макроэлементы, их концентрация в растении составляет 10 -2 –10%. Для нормального развития растений нужны микроэлементы, концентрация которых в клетке составляет 10 -5 –10 -3 %. Это бор, кобальт, медь, цинк, марганец, молибден др. Все эти элементы есть в почве, но иногда в недостаточном количестве. Поэтому в почву вносят минеральные и органические удобрения.

Растение нормально растёт и развивается в том случае, если в окружающей корни среде будут содержаться все необходимые питательные вещества. Такой средой для большинства растений является почва.

Дыхание корней

Для нормального роста и развития растения необходимо, чтобы к корню поступал свежий воздух.
Гибель растения наступает из-за недостатка воздуха, необходимого для дыхания корня.

Видоизменения корней

У некоторых растений в корнях откладываются запасные питательные вещества. В них накапливаются углеводы, минеральные соли, витамины и другие вещества. Такие корни сильно разрастаются в толщину и приобретают необычный внешний вид. В формировании корнеплодов участвуют и корень, и стебель.

Корнеплоды

Если запасные вещества накапливаются в главном корне и в основании стебля главного побега, образуются корнеплоды (морковь). Растения, образующие корнеплоды, в основном двулетники. В первый год жизни они не цветут и накапливают в корнеплодах много питательных веществ. На второй – они быстро зацветают, используя накопленные питательные вещества и образуют плоды и семена.

Корневые клубни

У георгина запасные вещества накапливаются в придаточных корнях, образуя корневые клубни.

Бактериальные клубеньки

Своеобразно изменены боковые корни у клевера, люпина, люцерны. В молодых боковых корешках поселяются бактерии, что способствует усвоению газообразного азота почвенного воздуха. Такие корни приобретают вид клубеньков. Благодаря этим бактериям эти растения способны жить на бедных азотом почвах и делать их более плодородными.

Ходульные

У пандуса, произрастающего в приливно-отливной зоне, развиваются ходульные корни. Они высоко над водой удерживают на зыбком илистом грунте крупные облиственные побеги.

Воздушные

У тропических растений, живущих на ветвях деревьев, развиваются воздушные корни. Они часто встречаются у орхидей, бромелиевых, у некоторых папоротников. Воздушные корни свободно висят в воздухе, не достигая земли и поглощая попадающую на них влагу от дождя или росы.

Втягивающие

У луковичных и клубнелуковичных растений, например у крокусов, среди многочисленных нитевидных корней имеется несколько более толстых, так называемых втягивающих, корней. Сокращаясь, такие корни втягивают клубнелуковицу глубже в почву.

Столбовидные

У фикуса развиваются столбовидные надземные корни, или корни-подпорки.

Почва как среда обитания корней

Почва для растений является средой, из которой оно получает воду и элементы питания. Количество минеральных веществ в почве зависит от специфических особенностей материнской горной породы, деятельности организмов, от жизнедеятельности самих растений, от типа почвы.

Почвенные частицы конкурируют с корнями за влагу, удерживая её своей поверхностью. Это так называемая связанная вода, которая подразделяется на гигроскопическую и плёночную. Удерживается она силами молекулярного притяжения. Доступная растению влага представлена капиллярной водой, которая сосредоточена в мелких порах почвы.

Между влагой и воздушной фазой почвы складываются антагонистические отношения. Чем больше в почве крупных пор, тем лучше газовый режим этих почв, тем меньше влаги удерживает почва. Наиболее благоприятный водно-воздушный режим поддерживается в структурных почвах, где вода и воздух находятся одновременно и не мешают друг другу – вода заполняет капилляры внутри структурных агрегатов, а воздух – крупные поры между ними.

Характер взаимодействия растения и почвы в значительной степени связан с поглотительной способностью почвы – способностью удерживать или связывать химические соединения.

Микрофлора почвы разлагает органические вещества до более простых соединений, участвует в формировании структуры почвы. Характер этих процессов зависит от типа почвы, химического состава растительных остатков, физиологических свойств микроорганизмов и других факторов. В формировании структуры почвы принимают участие почвенные животные: кольчатые черви, личинки насекомых и др.

В результате совокупности биологических и химических процессов в почве образуется сложный комплекс органических веществ, который объединяют термином «гумус».

Метод водных культур

В каких солях нуждается растение, и какое влияние оказывают они на рост и развитие его, было установлено на опыте с водными культурами. Метод водных культур – это выращивание растений не в почве, а в водном растворе минеральных солей. В зависимости от поставленной цели в опыте можно исключить отдельную соль из раствора, уменьшить или увеличить ее содержание. Было выяснено, что удобрения, содержащие азот, способствуют росту растений, содержащие фосфор – скорейшему созреванию плодов, а содержащие калий – быстрейшему оттоку органических веществ от листьев к корням. В связи с этим содержащие азот удобрения рекомендуется вносить перед посевом или в первой половине лета, содержащие фосфор и калий – во второй половине лета.

С помощью метода водных культур удалось установить не только потребность растения в макроэлементах, но и выяснить роль различных микроэлементов.

В настоящее время известны случаи, когда выращивают растения методами гидропоники и аэропоники.

Гидропоника – выращивание растений в сосудах, заполненных гравием. Питательный раствор, содержащий необходимые элементы, подаётся в сосуды снизу.

Аэропоника – это воздушная культура растений. При этом способе корневая система находится в воздухе и автоматически (несколько раз в течение часа) опрыскивается слабым раствором питательных солей.

Приглашаю всех высказываться в

Корень – осевой орган, обладающий способностью к неограниченному росту и свойством положительного геотропизма.

Функции корня. Корень выполняет несколько функций, остановимся на основных:

  1. Укрепление растения в почве и удержание надземной части растения;
  2. Поглощение воды и минеральных веществ;
  3. Проведение веществ;
  4. Может служить местом накопления запасных питательных веществ;
  5. Может служить органом вегетативного размножения.

Морфология корня. По происхождению корни делят на главный, боковые и придаточные (рис.). Главный корень – корень, развивающийся из зародышевого корешка. Для него характерен неограниченный рост и положительный геотропизм. Главный корень обладает наиболее активной верхушечной меристемой.

Боковые корни – корни, развивающиеся на другом корне любого происхождения и являющиеся образованиями второго и последующих порядков ветвления. Образование этих корней начинается с деления клеток специальной меристемы – перицикла, расположенного на периферии центрального цилиндра корня.


Рис.9. Зоны корня

Придаточные корни – корни, развивающиеся от стеблей, листьев, старых корней. Появляются за счет деятельности вторичных меристем.

Зоны молодого корня. Зоны молодого корня – это разные части корня по длине, выполняющие неодинаковые функции и характеризующиеся определенными морфологическими особенностями. У молодого корня обычно различают 4 зоны (рис. 9):

Зона деления. Верхушка корня, длиной 1-2 мм и называется зоной деления. Здесь и находится первичная апикальная меристема корня. За счет деления клеток этой зоны происходит постоянное образование новых клеток.

Апикальная меристема корня защищена корневым чехликом. Он образован живыми клетками, постоянно образующимися за счет меристемы. Часто содержат зерна крахмала (обеспечивают положительный геотропизм). Наружные клетки продуцируют слизь, которая облегчает продвижение корня в почве.

Зона роста, или растяжения. Протяженность зоны – несколько миллиметров. В этой зоне клеточные деления практически отсутствуют, клетки максимально растягиваются за счет образования вакуолей.

Зона всасывания , или зона корневых волосков. Протяженность зоны – несколько сантиметров. Здесь происходит дифференциация и специализация клеток. Здесь уже различают наружный слой эпиблемы (ризодермы) с корневыми волосками, слой первичной коры и центральный цилиндр. Корневой волосок представляет собой боковой вырост клетки эпиблемы (ризодермы). Почти всю клетку занимает вакуоль, окруженная тонким слоем цитоплазмы. Вакуоль создает высокое осмотическое давление, за счет которого вода с растворенными солями поглощается клеткой. Длина корневых волосков до 8 мм. В среднем на 1 мм 2 поверхности корня образуется от 100 до 300 корневых волосков. В результате суммарная площадь зоны всасывания больше площади поверхности надземных органов (у растения озимой пшеницы в 130 раз, например). Поверхность корневых волосков ослизняется и склеивается с частицами почвы, что облегчает поступление воды и минеральных веществ в растение. Поглощению способствует и выделение корневыми волосками кислот, растворяющих минеральные соли. Корневые волоски недолговечны, отмирают через 10-20 дней. На смену отмерших (в верхней части зоны) приходят новые (в нижней части зоны). За счет этого зона всасывания всегда находится на одинаковом расстоянии от кончика корня, и все время перемещается на новые участки почвы.

Зона проведения находится выше зоны всасывания. В этой зоне вода и минеральные соли, извлеченные из почвы, передвигаются от корней вверх к стеблю и листьям. Здесь же за счет образования боковых корней происходит ветвление корня.

Первичное и вторичное строение корня. Первичное строение корня формируется за счет первичных меристем, характерно для молодых корней всех групп растений. На поперечном срезе корня в зоне всасывания можно различить три части: эпиблему, первичную кору и центральный осевой цилиндр (стелу) (рис. 10). У плаунов, хвощей, папоротников и однодольных растений сохраняется в течение всей жизни.

Эпиблема, или кожица – первичная покровная ткань корня. Состоит из одного ряда плотно сомкнутых клеток, в зоне всасывания имеющих выросты – корневые волоски.

Первичная кора представлена тремя четко отличающимися друг от друга слоями: непосредственно под эпиблемой располагается экзодерма, наружная часть первичной коры. По мере отмирания эпиблемы оказывается на поверхности корня и в этом случае выполняет роль покровной ткани: происходит утолщение и опробковение клеточных оболочек, и отмирание содержимого клеток.

Под экзодермой располагается мезодерма , основной слой клеток первичной коры. Здесь происходит передвижение воды в осевой цилиндр корня, накапливаются питательные вещества.

Самый внутренний слой первичной коры – эндодерма, образованная одним слоем клеток. У двудольных растений клетки эндодермы имеют утолщения на радиальных стенках (пояски Каспари), пропитанные непроницаемым для воды жироподобным веществом – суберином.

У однодольных растений в клетках эндодермы образуются подковообразные утолщения клеточных стенок. Среди них встречаются живые тонкостенные клетки – пропускные клетки, также имеющие пояски Каспари. Клетки эндодермы с помощью живого протопласта контролируют поступление воды и растворенных в ней минеральных веществ из коры в центральный цилиндр и обратно органических веществ.

Центральный цилиндр, осевой цилиндр, или стела . Наружный слой стелы, примыкающий к эндодерме, называется перицикл. Его клетки долго сохраняют способность к делению. Здесь происходит заложение боковых корешков.

В центральной части осевого цилиндра находится сосудисто-волокнистый пучок. Ксилема образует звезду, а между ее лучами располагается флоэма. Количество лучей ксилемы различно – от двух нескольких десятков. У двудольных до пяти, у однодольных – пять и более пяти. В самом центре цилиндра могут находиться элементы ксилемы, склеренхима или тонкостенная паренхима.

Вторичное строение корня. У двудольных и голосеменных растений первичное строение корня сохраняется недолго. В результате деятельности вторичных меристем формируется вторичное строение корня.

Процесс вторичных изменений начинается с появления прослоек камбия между флоэмой и ксилемой. Камбий возникает из слабо дифференцированной паренхимы центрального цилиндра. Внутрь он откладывает элементы вторичной ксилемы (древесины), наружу элементы вторичной флоэмы (луба). Сначала прослойки камбия разобщены, затем смыкаются, образуя сплошной слой. При делении клеток камбия исчезает радиальная симметрия, характерная для первичного строения корня.

В перицикле возникает пробковый камбий (феллоген). Он откладывает наружу слои клеток вторичной покровной ткани – пробки. Первичная кора постепенно отмирает и слущивается.


Рис. 11. Типы корневых систем.

Видоизменения корней. Часто корни выполняют и другие функции, при этом возникают различные видоизменения корней.

Запасающие корни. Часто корень выполняет функцию накопления запаса питательных веществ. Такие корни называют запасающими. От типичных корней они отличаются сильным развитием запасающей паренхимы, которая может находиться в первичной (у однодольных) или вторичной коре, а также в древесине или сердцевине (у двудольных). Среди запасающих корней различают корневые клубни и корнеплоды.

Корневые клубни характерны как для двудольных, так и для однодольных растений, и образуются в результате видоизменения боковых или придаточных корней (чистяк, ятрышник, любка). Вследствие ограниченного роста в длину они могут иметь овальную, веретеновидную форму и не ветвятся. У большинства видов двудольных и однодольных клубень является лишь частью корня, а на остальном протяжении корень имеет типичное строение и ветвится (батат, георгина , лилейник).

Чаще всего корнеплоды образуются в результате вторичного утолщения корней (морковь, пастернак , петрушка , сельдерей , репа, редька, редис). При этом запасающая ткань может развиваться как в ксилеме, так и в флоэме. В утолщении главного корня может принимать участие и перицикл, формируя добавочные камбиальные кольца (у свеклы).

Такие воздушные корни образуют на поверхности веламен – слой губчатой гигроскопической ткани, поглощающей влагу, находящейся в воздухе.

В корнях многих растений (бобовых, березовых, лоховых и др.) могут поселяться клубеньковые бактерии , которые вызывают разрастание клеток паренхимы и образование клубеньков . Эти бактерии – активные азотфиксаторы, они поглощают из воздуха атмосферный азот, который становится доступен растениям. В воздухе около 79% азота, но растения не способны его использовать для синтеза аминокислот, азотистых основания и поглощают азот из почвы. Растения, живущие в симбиозе с клубеньковыми бактериями не испытывают недостатка в азоте, содержат много белка и при отмирании обогащают почву азотом. Клевер или люцерна, например, накапливают в клубеньках до 300 кг/га азота в год.

Удобрения. Для улучшения роста растений в почву вносят минеральные вещества и органические соединения – удобрения. Удобрением называются органические или минеральные вещества, применяемые для улучшения условий питания растений.

К органическим удобрениям относят навоз, торф, птичий помет, фекалии, компосты. Достоинством органических удобрений является, прежде всего, их комплексность. Они соединяют в себе и минеральные соли и органические вещества, постепенно образующие при разложении минеральные соединений.

Одним из основных органических удобрений является навоз – отход животноводства, состоящий из выделений животных и подстилки. Органические вещества навоза становится доступным растениям лишь после минерализации. Этот процесс протекает медленно, поэтому в течение нескольких лет растения обеспечиваются необходимыми им веществами.

К минеральным удобрениям относятся азотные, фосфорные, калийные и другие промышленные удобрения, а из местных удобрений – зола. Минеральные удобрения в зависимости от содержания основных питательных элементов делятся на простые – удобрения, содержащие в своем составе лишь один из трех важнейших питательных элементов (N, P или K) – азотные, фосфорные, калийные и комплексные, или комбинированные – удобрения, содержащие в своем составе два или три элемента: азотно-калийные, азотно-фосфорные, азотно-фосфорно-калийные (нитрофоски).

Азотные удобрения – аммиачная селитра, карбамид (синтетическая мочевина), сульфат аммония, хлористый аммоний, натриевая селитра, кальциевая селитра – усиливают рост стеблей и листьев.

Фосфорные удобрения – суперфосфат, фосфоритная мука, костяная мука – продлевают цветение, ускоряют созревание плодов.

Калийные удобрения – сульфат калия, карбонат калия, сернокислый калий – усиливают рост подземных органов растений корней, луковиц, клубней.

Кроме N, P, K, требующихся растениям в значительных количествах, растениям необходимы и некоторые другие элементы, такие как бор, марганец, медь, молибден, цинк и другие. Эти элементы требуются в незначительных количествах и получили название микроэлементов, а удобрения, их содержащие – микроудобрениями.

Ключевые термины и понятия

1. Корень. 2. Главный корень, боковые и придаточные корни. 3. Первичное строение корня. 4. Вторичное строение корня. 5. Первичная кора. 6. Осевой цилиндр, стела корня. 7. Пояски Каспари. 8. Перицикл. 9. Корневая система. 10. Пикировка. 11. Апопластный, симпластный пути транспорта. 12. Корневое давление. 13. Гуттация. 14. Пасока. 15. Корнеплоды. 16. Корнеклубни. 17. Дыхательные корни. 18. Воздушные корни, веламен. 19. Клубеньковые бактерии .

Основные вопросы для повторения

  1. Что такое корень?
  2. Какие корни называются главными, придаточными, боковыми?
  3. Чем отличаются корневые системы двудольных и однодольных растений?
  4. Три слоя первичной коры корня?
  5. Ткани осевого цилиндра корня.
  6. Пути горизонтального транспорта веществ по корню?
  7. Нижний и верхний двигатели водного тока по стеблю и листьям?
  8. Видоизменения корней.
  9. Значение азотных, калийных и фосфорных удобрений.