Расчет потребления тепловой энергии на отопление. Расчет гкал на отопление. Усредненный расчет и точный

Годовые потери теплоты здания Q ts , кВтч, следует определять по формуле

где - сумма потерь теплоты через ограждающие конструкции помещений, Вт;

t в - средневзвешенная по объему здания расчетная температура внутреннего воздуха, С;

t х - средняя температура наиболее холодной пятидневки обеспеченностью 0,92, С, принимаемая по ТКП /1/;

D - количество градусо-суток отопительного периода, Ссут.

8.5.4. Суммарный годовой расход тепловой энергии на отопление и вентиляцию здания

Суммарный годовой расход тепловой энергии на отопление и вентиляцию здания Q s , кВтч, следует определять по формуле

Q s = Q ts Q hs 1 , (7)

где Q ts - годовые потери теплоты здания, кВтч;

Q hs - годовые поступления теплоты от электрических приборов, освещения, технологического оборудования, коммуникаций, материалов, людей и других источников, кВтч;

 1 - коэффициент, принимаемый по таблице 1 в зависимости от способа регулирования системы отопления здания.

Таблица 8.1

Q s =Q ts Q hs  1 =150,54 – 69,05 0,4=122,92 кВтч

8.5.5. Удельные расходы тепловой энергии на отопление и вентиляцию

Удельные расходы тепловой энергии на отопление и вентиляцию зданий q А , Втч/(м 2 °Ссут), и q V , Вт· ч/(м 3 °Ссут), следует определять по формулам:

где Q s - суммарный годовой расход тепловой энергии на отопление и вентиляцию здания, кВтч;

F от - отапливаемая площадь здания, м 2 , определяемая по внутреннему периметру наружных вертикальных ограждающих конструкций;

V от - отапливаемый объем здания, м 3 ;

D - количество градусо-суток отопительного периода, °Ссут.

8.5.6. Нормативные удельные расходы тепловой энергии на отопление и вентиляцию

Нормативные удельные расходы тепловой энергии на отопление и вентиляцию жилых и общественных зданий приведены в таблице 8.2.

Таблица 8.2

Наименование

объектов нормирования

Нормативный удельный расход тепловой энергии

на отопление и вентиляцию

на вентиляцию с искусственным побуждением

q А н, Втч/(м 2 Ссут)

q V н, Втч/(м 3 Ссут)

q h in , Втч/(м 3 Ссут)

1 Жилые дома (9 этажей и более) с наружными стенами из:

многослойных панелей

монолитного бетона

штучных материалов

2 Жилые дома (6-8 этажей) с наружными стенами из:

многослойных панелей

штучных материалов

3 Жилые дома (4-5 этажей) с наружными стенами из:

многослойных панелей

штучных материалов

4 Жилые дома (2-3 этажа) с наружными стенами из штучных материалов

5 Коттеджи, жилые дома усадебного типа, в том числе с мансардами

6 Детские сады с наружными стенами из:

многослойных панелей

штучных материалов

7 Детские сады с бассейном с наружными стенами из:

многослойных панелей

штучных материалов

8 Школы с наружными стенами из:

многослойных панелей

штучных материалов

9 Поликлиники с наружными стенами из:

многослойных панелей

штучных материалов

10 Поликлиники с бассейном или гимнастическим залом с наружными стенами из:

многослойных панелей

штучных материалов

11 Административное здание с наружными стенами из:

многослойных панелей

штучных материалов

Примечания

1 Значения нормативных удельных расходов тепловой энергии на отопление определены при коэффициенте остекленности, равном: для поз. 1-4 - 0,18; для поз. 5 - 0,15.

2 Значения удельных расходов тепловой энергии на вентиляцию с искусственным побуждением приведены в качестве справочных.

Продолжительность работы систем приточной вентиляции с искусственным побуждением для общественных зданий за отопительный период определена на основании следующих исходных данных:

Для детских яслей-садов: 5-дневная рабочая неделя и 12-часовой рабочий день;

Для общеобразовательных школ: 6-дневная рабочая неделя и 12-часовой рабочий день;

Для административных зданий: 5-дневная рабочая неделя и 10-часовой рабочий день.

Системы отопления и приточной вентиляции должны работать в зданиях при среднесуточных температурах наружного воздуха tн.сут от +8С и ниже в районах расчетной температурой наружного воздуха для проектирования отопления до -30С и при tн.сут от +10С и ниже в районах расчетной температурой наружного воздуха для проектирования отопления ниже -30С. Значения продолжительности отопительного периода Nо и средней температуры наружного воздуха tн.ср приведены в и для некоторых городов России в приложении А. Например, для Вологды и прилегающих к ней районов Nо= 250 сут/год, а tн.ср = - 3,1С при tн.сут=+10С.

Расходы тепловой энергии в ГДж или Гкал на отопление и вентиляцию зданий за определенный период (месяц или отопительный сезон) определяются по следующим формулам

Qо.= 0,00124NQо.р(tвн - tн.ср)/(tвн - tн.р),

Qв.= 0,001ZвNQв.р(tвн - tн.ср)/(tвн - tн.р),

где N - число суток в расчетном периоде; для систем отопления N - это продолжительность отопительного сезона Nо из приложения А или число дней в конкретном месяце Nмес; для приточных систем вентиляции N - это число рабочих дней предприятия или учреждения в течение месяца Nм.в или отопительного сезона Nв, например, при пятидневной рабочей неделе Nм.в= Nмес5/7, а Nв = Nо5/7;

Qо.р, Qв.р - расчетная тепловая нагрузка (максимальный часовой расход) в МДж/ч или Мкал/ч на отопление или вентиляцию здания, вычисляемая по формулам.

tвн - средняя температура воздуха в здании, приведенная в приложении Б;

tн.ср - средняя температура наружного воздуха за рассматриваемый период (отопительный сезон или месяц), принимаемая по или по приложению Б;

tн.р - расчетная температура наружного воздуха для проектирования отопления (температура наиболее холодной пятидневки обеспеченностью 0,92) ;

Zв - число часов работы приточных систем вентиляции и воздушно-тепловых завес в течение суток; при односменной работе цеха или учреждения принимается Zв = 8 час/сут, при двухсменной - Zв = 16 час/сут, при отсутствии данных в целом для микрорайона Zв = 16 час/сут.

Годовой расход теплоты на горячее водоснабжение Qгв.год в ГДж/год или Гкал/год определяется по формуле

Qгв.год = 0,001Qсут (Nз + Nл Kл),

где Qсут - суточный расход теплоты на горячее водоснабжение здания в МДж/сут или Мкал/сут, вычисленный по формуле;

Nз - число суток потребления горячей воды в здании за отопительный (зимний) период; для жилых домов, больниц, продуктовых магазинов и других зданий с ежедневной работой систем горячего водоснабжения Nз принимается равным продолжительности отопительного сезона Nо; для предприятий и учреждений Nз - это число рабочих дней в течение отопительного периода, например при пятидневной рабочей неделе Nз= Nо5/7;

Nл - число суток потребления горячей воды в здании за летний период; для жилых домов, больниц, продуктовых магазинов и других зданий с ежедневной работой систем горячего водоснабжения Nл = 350 - Nо, где 350 - расчетное число суток в году работы систем ГВ; для предприятий и учреждений Nл - это число рабочих дней в течение летнего периода, например при пятидневной рабочей неделе Nл = (350 - Nо) 5/7;

Kл - коэффициент, учитывающий снижение расхода теплоты на ГВ из-за более высокой начальной температуры нагреваемой воды, которая зимой равна tх.з=5 град, а летом в среднем tх.л = 15 град; при этом коэффициент Kл будет равен Kл = (tг - tх.л)/(tг - tх.з) = (55 - 15)/(55 - 5) = 0,8; при заборе воды из скважин может оказаться tх.л = tх.з и тогда Kл = 1,0;

Коэффициент, учитывающий возможное уменьшение количества потребителей горячей воды в летнее время в связи с отъездом части жителей из города на отдых и принимаемый для жилищно-коммунального сектора равным = 0,8 (для курортных и южных городов = 1,5), а для предприятий = 1,0.

Порядок расчета отопления в жилом фонде зависит от наличия приборов учета и от того, каким способом ими оборудован дом. Существует несколько вариантов комплектации счетчиками многоквартирных жилых домов, и согласно которым, производится расчет тепловой энергии:

  1. наличие общедомового счетчика, при этом квартиры и нежилые помещения приборами учетами не оборудованы.
  2. расходы на отопление контролирует общедомовой прибор, а также все или некоторые помещения оборудованы учетными приборами.
  3. общедомовой прибор фиксации потребления и расхода тепловой энергии отсутствует.

Перед тем как рассчитать количество потраченных гигакалорий, необходимо выяснить наличие или отсутствие контроллеров на доме и в каждом отдельном помещении, включая нежилые. Рассмотрим все три варианта расчета тепловой энергии, к каждому из которых разработана определенная формула (размещены на сайте государственных уполномоченных органов).

Вариант 1

Итак, дом оборудован контрольным прибором, а отдельные помещения остались без него. Здесь необходимо брать во внимание две позиции: подсчет гкал на отопление квартиры, затраты тепловой энергии на общедомовые нужды (ОДН).

В данном случае используется формула №3, которая основана на показаниях общего учетного прибора, площади дома и метраже квартиры.

Пример вычислений

Будем считать, что контроллер зафиксировал расходы дома на отопление в 300 гкал/месяц (эти сведения можно узнать из квитанции или обратившись в управляющую компанию). К примеру, общая площадь дома, которая состоит из суммы площадей всех помещений (жилых и нежилых), составляет 8000 м² (также можно узнать эту цифру из квитанции или от управляющей компании).

Возьмем площадь квартиры в 70 м² (указана в техпаспорте, договоре найма или регистрационном свидетельстве). Последняя цифра, от которой зависит расчет оплаты за потребленную теплоэнергию, это тариф, установленный уполномоченными органами РФ (указан в квитанции или выяснить в домоуправляющей компании). На сегодняшний день тариф на отопление равен 1 400 руб/гкал.


Подставляя данные в формулу №3, получим следующий результат: 300 х 70 / 8 000 х 1 400 = 1875 руб.

Теперь можно переходить ко второму этапу учета расходов на отопление, потраченных на общие нужды дома. Здесь потребуется две формулы: поиск объема услуги (№14) и плата за потребление гигакалорий в рублях (№10).

Чтобы правильно определить объем отопления в данном случае, потребуется суммирование площади всех квартир и помещений, предоставленных для общего пользования (сведения предоставляет управляющая компания).

К примеру, у нас имеется общий метраж в 7000 м² (включая квартиры, офисы, торговые помещения.).

Приступим к вычислению оплаты за расход тепловой энергии по формуле №14: 300 х (1 – 7 000 / 8 000) х 70 / 7 000 = 0,375 гкал.


Используя формулу №10, получаем: 0,375 х 1 400 = 525, где:

  • 0,375 – объем услуги за подачу тепла;
  • 1400 р. – тариф;
  • 525 р. – сумма платежа.

Суммируем результаты (1875 + 525) и выясняем, что оплата за расход тепла составит 2350 руб.

Вариант 2

Теперь проведем расчет платежей в тех условиях, когда дом оснащен общим учетным прибором на отопление, а также индивидуальными счетчиками снабжена часть квартир. Как и в предыдущем случае, подсчет будет проводиться по двум позициям (тепловые энергозатраты на жилье и ОДН).

Нам понадобится формула №1 и №2 (правила начислений согласно показаниям контроллера или с учетом нормативов потребления тепла для жилых помещений в гкал). Вычисления будут проводиться относительно площади жилого дома и квартиры из предыдущего варианта.

  • 1,3 гигакалорий – показания индивидуального счетчика;
  • 1 1820 р. – утвержденный тариф.

  • 0,025 гкал – нормативный показатель расхода тепла на 1 м² площади в квартире;
  • 70 м² – метраж квартиры;
  • 1 400 р. – тариф на тепловую энергию.

Как становится понятно, при таком варианте сумма платежа будет зависеть от наличия устройства учета в вашей квартире.

Формула №13: (300 – 12 – 7 000 х 0,025 – 9 – 30) х 75 / 8 000 = 1,425 гкал, где:

  • 300 гкал – показания общедомового счетчика;
  • 12 гкал – количество тепловой энергии, использованной на обогрев нежилых помещений;
  • 6 000 м² – сумма площади всех жилых помещений;
  • 0,025 – норматив (потребление тепловой энергии для квартир);
  • 9 гкал – сумма показателей со счетчиков всех квартир, которые оборудованы приборами учета;
  • 35 гкал – количество тепла, затраченного на подачу горячей воды при отсутствии ее централизованной подачи;
  • 70 м² – площадь квартиры;
  • 8 000 м² – общая площадь (все жилые и нежилые помещения в доме).

Обратите внимание, что данный вариант включает только реальные объемы потребляемой энергии и если ваш дом снабжен централизованной подачей горячей воды, то объем тепла, затраченного на нужды горячего водоснабжения, не учитывается. Это же касается и нежилых помещений: если они отсутствуют в доме, то и в расчет включены не будут.

  • 1,425 гкал – количество тепла (ОДН);


  1. 1820 + 1995 = 3 815 руб. - с индивидуальным счетчиком.
  2. 2 450 + 1995 = 4445 руб. - без индивидуального устройства.

Вариант 3

У нас остался последний вариант, в ходе которого мы рассмотрим ситуацию, когда на доме отсутствует счетчик тепловой энергии. Расчет, как и в предыдущих случаях, проведем по двум категориям (тепловые энергозатраты на квартиру и ОДН).

Выведение суммы на отопление, проведем при помощи формул №1 и №2 (правила о порядке расчета тепловой энергии с учетом показаний индивидуальных учетных приборов или согласно установленным нормативам для жилых помещений в гкал).

Формула №1: 1,3 х 1 400 = 1820 руб., где:

  • 1,3 гкал – показания индивидуального счетчика;
  • 1 400 р. – утвержденный тариф.

Формула №2: 0,025 х 70 х 1 400 = 2 450 руб., где:

  • 1 400 р. – утвержденный тариф.


Как и во втором варианте, платеж будет зависеть от того, оборудовано ли ваше жилье индивидуальным счетчиком на тепло. Теперь необходимо выяснить объем теплоэнергии, которая была израсходована на общедомовые нужды, и выполнять это нужно по формуле №15 (объем услуги на ОДН) и №10 (сумма за отопление).

Формула №15: 0,025 х 150 х 70 / 7000 = 0,0375 гкал, где:

  • 0,025 гкал – нормативный показатель расхода тепла на 1 м² жилой площади;
  • 100 м² – сумма площади помещений, предназначенных для общедомовых нужд;
  • 70 м² – общая площадь квартиры;
  • 7 000 м² – общая площадь (всех жилые и нежилые помещения).

Формула №10: 0,0375 х 1 400 = 52,5 руб., где:

  • 0,0375 – объем тепла (ОДН);
  • 1400 р. – утвержденный тариф.


В результате проведенных подсчетов мы выяснили, что полная оплата за отопление составит:

  1. 1820 + 52,5 = 1872,5 руб. – с индивидуальным счетчиком.
  2. 2450 + 52,5 = 2 502,5 руб. – без индивидуального счетчика.

В приведенных выше расчетах платежей за отопление были использованы данные о метраже квартиры, дома, а также о показателях счетчика, которые могут существенно отличаться от тех, которые есть у вас. Все что вам нужно, это подставить свои значения в формулу и произвести окончательный расчет.

Что это такое — удельный расход тепла на отопление? В каких величинах измеряется удельный расход тепловой энергии на отопление здания и, главное, откуда берутся его значения для расчетов? В этой статье нам предстоит познакомиться с одним из основных понятий теплотехники, а заодно изучить несколько смежных понятий. Итак, в путь.

Что это такое

Определение

Определение удельного расхода тепла дается в СП 23-101-2000. Согласно документу, так называется количество тепла, нужное для поддержания в здании нормируемой температуры, отнесенное к единице площади или объема и к еще одному параметру — градусо-суткам отопительного периода.

Для чего используется этот параметр? Прежде всего — для оценки энергоэффективности здания (или, что то же самое, качества его утепления) и планирования затрат тепла.

Собственно, в СНиП 23-02-2003прямо говорится: удельный (на квадратный или кубический метр) расход тепловой энергии на отопление здания не должен превышать приведенных значений.
Чем лучше теплоизоляция, тем меньше энергии требует обогрев.

Градусо-сутки

Как минимум один из использованных терминов нуждается в разъяснении. Что это такое — градусо-сутки?

Это понятие прямо относится к количеству тепла, необходимому для поддержания комфортного климата внутри отапливаемого помещения в зимнее время. Она вычисляется по формуле GSOP=Dt*Z, где:

  • GSOP — искомое значение;
  • Dt — разница между нормированной внутренней температурой здания (согласно действующим СНиП она должна составлять от +18 до +22 С) и средней температурой самых холодных пяти дней зимы.
  • Z — длина отопительного сезона (в сутках).

Как несложно догадаться, значение параметра определяется климатической зоной и для территории России варьируются от 2000 (Крым, Краснодарский край) до 12000 (Чукотский АО, Якутия).

Единицы измерения

В каких величинах измеряется интересующий нас параметр?

  • В СНиП 23-02-2003 используются кДж/(м2*С*сут) и, параллельно с первой величиной, кДж/(м3*С*сут) .
  • Наряду с килоджоулем могут использоваться другие единицы измерения тепла — килокалории (Ккал), гигакалории (Гкал) и киловатт-часы (КВт*ч) .

Как они связаны между собой?

  • 1 гигакалория = 1000000 килокалорий.
  • 1 гигакалория = 4184000 килоджоулей.
  • 1 гигакалория = 1162,2222 киловатт-часа.

На фото — теплосчетчик. Приборы учета тепла могут использовать любые из перечисленных единиц измерения.

Нормированные параметры

Для одноквартирных одноэтажных отдельностоящих домов

Для многоквартирных домов, общежитий и гостиниц

Обратите внимание: с увеличением количества этажей норма расхода тепла уменьшается.
Причина проста и очевидна: чем больше объект простой геометрической формы, тем больше отношение его объема к площади поверхности.
По той же причине удельные расходы на отопление загородного дома уменьшаются с увеличением отапливаемой площади.

Вычисления

Точное значение потерь тепла произвольным зданием вычислить практически невозможно. Однако давно разработаны методики приблизительных расчетов, дающих в пределах статистики достаточно точные средние результаты. Эти схемы вычислений часто упоминается как расчеты по укрупненным показателям (измерителям).

Наряду с тепловой мощностью часто возникает необходимость рассчитать суточный, часовой, годичный расход тепловой энергии или среднюю потребляемую мощность. Как это сделать? Приведем несколько примеров.

Часовой расход тепла на отопление по укрупненным измерителям вычисляется по формуле Qот=q*a*k*(tвн-tно)*V, где:

  • Qот — искомое значение к килокалориях.
  • q — удельная отопительная величина дома в ккал/(м3*С*час). Она ищется в справочниках для каждого типа зданий.

  • а — коэффициент поправки на вентиляцию (обычно равен 1,05 — 1,1).
  • k — коэффициент поправки на климатическую зону (0,8 — 2,0 для разных климатических зон).
  • tвн — внутренняя температура в помещении (+18 — +22 С).
  • tно — уличная температура.
  • V — объем здания вместе с ограждающими конструкциями.

Чтобы вычислить приблизительный годовой расход тепла на отопление в здании с удельным расходом в 125 кДж/(м2*С*сут) и площадью 100 м2, расположенном в климатической зоне с параметром GSOP=6000, нужно всего-то умножить 125 на 100 (площадь дома) и на 6000 (градусо-сутки отопительного периода). 125*100*6000=75000000 кДж, или примерно 18 гигакалорий, или 20800 киловатт-часов.

Чтобы пересчитать годичный расход в среднюю тепловую , достаточно разделить его на длину отопительного сезона в часах. Если он длится 200 дней, средняя тепловая мощность отопления в приведенном выше случае составит 20800/200/24=4,33 КВт.

Энергоносители

Как своими руками вычислить затраты энергоносителей, зная расход тепла?

Достаточно знать теплотворную способность соответствующего топлива.

Проще всего вычислить расход электроэнергии на отопление дома: он в точности равен произведенному прямым нагревом количеству тепла.

Описание:

Одним из ключевых направлений повышения энергоэффективности экономики является снижение энергопотребления строящихся и эксплуатируемых зданий. В статье рассмотрены основные показатели, влияющие на определение годовых расходов энергии на эксплуатацию здания.

Определение годовых расходов энергии на эксплуатацию зданий

А. Л. Наумов , генеральный директор ООО «НПО Термэк»

Г. А. Смага , технический директор АНО «РУСДЕМ»

Е. О. Шилькрот , зав. лабораторией ОАО «ЦНИИПромзданий»

Одним из ключевых направлений повышения энергоэффективности экономики является снижение энергопотребления строящихся и эксплуатируемых зданий. В статье рассмотрены основные показатели, влияющие на определение годовых расходов энергии на эксплуатацию здания.

До настоящего времени в проектной практике, как правило, определялись только расчетные максимальные нагрузки на системы тепло- и электропотребления, годовые расходы энергии на комплекс систем инженерного обеспечения зданий не нормировался. Расчет расходов тепла за отопительный период носил справочно-рекомендательный характер .

Предпринимались попытки контролировать на проектной стадии годовые расходы тепловой энергии на системы отопления, вентиляции, горячего водоснабжения .

В 2009 году для Москвы был разработан Стандарт АВОК «Энергетический паспорт проекта здания к СНиП 23-02, МГСН 2.01 и МГСН 4.19» .

В этом документе в значительной степени удалось устранить недочеты предыдущих методик определения удельных энергетических показателей здания за отопительный период, но вместе с тем, с нашей точки зрения, и он нуждается в уточнениях.

Так, использование в качестве аргумента при определении удельных затрат тепла комплекса градусо-сутки представляется не вполне корректным, а при определении удельных затрат электроэнергии – нелогичным. Трансмиссионные потери тепла в районах с различной температурой наружного воздуха примерно одинаковы, так как корректируются величиной сопротивления теплопередаче. Затраты тепла на нагрев вентиляционного воздуха напрямую зависят от температуры наружного воздуха. Целесообразно устанавливать показатели удельных затрат энергии в расчете на 1 м 2 в зависимости от климатической зоны.

Для всех жилых и общественных зданий при определении тепловых нагрузок на системы отопления и вентиляции за отопительный период принимается одинаковая (для заданного региона) продолжительность отопительного периода, средняя температура наружного воздуха и соответствующий показатель градусо-суток. Продолжительность отопительного периода определяется для теплоснабжающих организаций из условия установления среднесуточной температуры наружного воздуха за 5-дневный период +8 ˚C, а для ряда медицинских и образовательных учреждений +10 ˚C. По многолетней практике эксплуатации большинства зданий в прошлом веке при такой наружной температуре уровень внутренних тепловыделений и инсоляции не позволял снижаться температуре воздуха в помещениях ниже +18…+20 ˚C.

С тех пор многое изменилось: значительно выросли требования к теплозащите наружных ограждений зданий, выросла бытовая энергоемкость домохозяйств, существенно возросла энерговооруженность рабочих мест персонала общественных зданий.

Очевидно, что температура в помещениях +18…+20 ˚C обеспечивается в это время внутренними тепловыделениями и инсоляцией. Запишем следующее соотношение:

Здесь Q вн, t в, t н, ΣR огр – соответственно величина внутренних тепловыделений и инсоляции, температура внутреннего и наружного воздуха, средневзвешенное по площади сопротивление теплопередаче наружных ограждений.

При изменении значений Q вн и ΣR огр получим (относительно принимаемых в ):

(2)

Поскольку значения Q вн и ΣR огр увеличились, в современных условиях величина tн уменьшится, что вызовет сокращение продолжительности отопительного периода.

Как следствие, в ряде жилых новостроек фактические сроки потребности в отоплении сместились к наружной температуре +3…+5 ˚C, а в офисах с напряженным графиком работы к 0…+2 ˚C и даже ниже. Это означает, что системы отопления с адекватной системой регулирования и автоматизации до наступления соответствующей температуры наружного воздуха будут блокировать подачу теплоты в здание.

Можно ли пренебречь этими обстоятельствами? Сокращение продолжительности отопительного периода по данным метеонаблюдений в Москве за 2008 год при переходе от «стандартной» наружной температуры +8 ˚C с 216 суток снижается при +4 ˚C до 181 суток, при +2 ˚C до 128 суток, а при 0 ˚C до 108 суток. Показатель градусо-суток уменьшается соответственно до 81, 69 и 51 % от базового уровня при +8 ˚C.

В таблице приведены обработанные данные метеонаблюдений за 2008 год.

Изменение годовой нагрузки на систему отопления
в зависимости от продолжительности отопительного периода
Температура наружного воздуха по окончании отопительного периода здания, о С Продолжительность отопительного периода, сутки Показатель ГС
+10 252 4 189 110
+8 216 3 820 100
+6 202 3 370 88
+4 181 3 091 81
+2 128 2 619 69
0 108 1 957 51
-2 72 1 313 34
-4 44 1 080 28
-6 23 647 17

Не трудно показать на примере вероятные ошибки недоучета фактической продолжительности отопительного периода. Воспользуемся примером для высотного здания, приведенным в Стандарте АВОК:

Теплопотери через наружные ограждающие конструкции за отопительный период равны 7 644 445 кВт·ч;

Теплопоступления за отопительный период составят 2 614 220 кВт·ч;

Внутренние тепловыделения за отопительный период при удельном показателе 10 Вт/м 2 составят 7 009 724 кВт·ч/м 2 .

Приняв, что система вентиляции работает с подпором воздуха, а температура приточного воздуха равна нормируемой температуре воздуха в помещениях, нагрузка на систему отопления будет складываться из баланса теплопотерь, внутренних теплопоступлений и инсоляции по формуле, предложенной в стандарте:

где Q ht – теплопотери здания;

Q int – теплопоступления от инсоляции;

Q z – внутренние тепловыделения;

ν, ς, β – поправочные коэффициенты: ν = 0,8; ς = 1;

Подставив наши значения в формулу (3), получим Q i v = 61 822 кВт·ч.

Другими словами, по расчетной модели стандарта годовая нагрузка на систему отопления отрицательная и отапливать здание не нужно.

На самом деле это не так, температура наружного воздуха, при которой наступает баланс трансмиссионных теплопотерь и внутренних теплопоступлений с учетом радиации, равна около +3 ˚C. Трансмиссионные теплопотери в этот период составят 4 070 000 кВт·ч, а внутренние теплопоступления с понижающим коэффициентом 0,8 – 3 200 000 кВт·ч. Нагрузка на систему отопления составит 870 000 кВт·ч.

В подобном уточнении нуждается и расчет годового потребления тепловой энергии в жилых зданиях, что нетрудно показать на примере.

Определим, при какой температуре наружного воздуха в весенний и осенний периоды наступает баланс теплопотерь здания, включая естественную вентиляцию и теплопоступления за счет инсоляции и бытовых тепловыделений. Исходные данные взяты из примера для 20-этажного односекционного дома из энергетического паспорта :

Поверхность наружных ограждений – 10 856 м 2 ;

Приведенный коэффициент теплопередачи – 0,548 Вт/(м 2 ·˚C);

Внутренние тепловыделения в жилой зоне – 15,6 Вт/м 2 , в общественной – 6,07 Вт/м 2 ;

Кратность воздухообмена – 0,284 1/ч;

Величина воздухообмена – 12 996 м 3 /ч.

Расчетная среднесуточная величина инсоляции в апреле составит 76 626 Вт, в сентябре-октябре – 47 745 Вт. Расчетная величина среднесуточных бытовых тепловыделений – 84 225 Вт.

Таким образом, баланс теплопотерь и теплопоступлений весной наступит при температуре наружного воздуха +4,4 ˚C, а осенью при +7,2 ˚C.

При этих значениях температуры начала и окончания отопительного периода его продолжительность заметно уменьшится. Соответственно, показатель градусо-суток и годовые расходы теплоты на отопление и вентиляцию по отношению к «стандартному подходу» следует понизить примерно на 12 %.

Откорректировать расчетную модель по фактической продолжительности отопительного периода возможно с использованием следующего алгоритма:

Для заданного региона путем статистической обработки метеоданных определяется зависимость от наружной температуры продолжительности отопительного периода и показателя градусо-суток (см. табл.).

На основе баланса трансмиссионных теплопотерь с учетом инфильтрации воздуха и внутренних теплопоступлений с учетом инсоляции определяется «балансовая» температура наружного воздуха, которая задает границы отопительного периода. При определении теплопоступлений за счет инсоляции проводятся итерации, так как интенсивность падающей солнечной радиации меняется в зависимости от периодов года.

По метеотаблице определяются фактическая продолжительность отопительного периода и показатель градусо-суток. Далее, по известным формулам определяются трансмиссионные теплопотери, теплопоступления и нагрузка на систему отопления за отопительный период.

Нуждается в корректировке включение в основную расчетную формулу стандарта (1) в состав «общих теплопотерь здания через ограждающую оболочку здания» расходов теплоты на нагрев приточного воздуха по следующим соображениям:

Продолжительность периода работы системы отопления и теплоснабжения систем вентиляции в общем случае не совпадает. В некоторых зданиях теплоснабжение систем вентиляции обеспечивается до температуры наружного воздуха +14…+16 ˚C. В ряде случаев и в холодный период года необходимо определять тепловые нагрузки на вентиляцию не по «явному» теплу, а с учетом энтальпийного теплообмена. Работа воздушно-тепловых завес также не всегда вписывается в отопительный режим.

- «Потребительский подход», устанавливающий баланс между уровнем теплозащиты ограждений и нагрузками на отопление, не корректно распространять на системы вентиляции. Теплоснабжение систем механической вентиляции напрямую не связано с уровнем теплозащиты ограждений.

Распространять коэффициент β, «учитывающий дополнительное теплопотребление системы отопления, связанное с дискретностью номинального теплового потока номенклатурного ряда отопительных приборов…», на теплопотребление систем механической вентиляции также неправомерно.

Откорректировать расчетную модель возможно, обеспечив раздельный расчет тепловых нагрузок на системы отопления и механической вентиляции. Для гражданских зданий с естественной вентиляцией расчетная модель может быть сохранена.

Основными направлениями энергосбережения в системах механической вентиляции являются утилизация теплоты вытяжного воздуха для нагрева приточного и системы с переменным расходом воздуха.

Стандарт следовало бы дополнить соответствующими показателями снижения тепловых нагрузок, а также разделом, связанным с определением энергетических годовых нагрузок на системы холодоснабжения и кондиционирования воздуха. Алгоритм расчета этих нагрузок такой же, как и для отопления, но по фактической продолжительности периода работы системы кондиционирования воздуха и показателя градусо-суток (энтальпийных суток) в переходный и теплый периоды года. Потребительский подход для зданий с кондиционированием воздуха рекомендуется расширить оценкой уровня теплозащиты наружных ограждений не только для холодного, но и для теплого периода года .

Целесообразно в стандарте регламентировать годовое потребление электрической энергии системами инженерного обеспечения зданий:

Привод насосов в системах отопления, водоснабжения, холодоснабжения;

Привод вентиляторов в системах вентиляции и кондиционирования воздуха;

Привод холодильных машин;

Расходы электроэнергии на освещение.

Методических затруднений определение годовых затрат электрической энергии не вызывает.

Нуждается в уточнении показатель компактности здания, представляющий собой размерную величину – отношение общей поверхности наружных ограждений к объему здания (1/м). По логике стандарта, чем ниже этот показатель, тем выше энергоэффективность здания. Если сравнить двухэтажные здания размерами в плане 8 × 8 м, одно высотой 8 м, а второе 7 м, то первое будет иметь показатель компактности 0,75 (1/м), а второе худший – 0,786 (1/м).

В то же время теплопотребляющая поверхность первого здания будет на 24 м 2 больше при одной и той же полезной площади и оно будет более энергоемким.

Предлагается ввести другой безразмерный показатель компактности здания – отношение полезной отапливаемой площади здания к общей площади наружных ограждений. Эта величина корреспондируется и с нормативами стандарта (энергоемкость на 1 м 2 площади), и с другими удельными показателями (площадь, приходящаяся на одного жителя, сотрудника, внутренние удельные тепловыделения и т. п.). Кроме того, она однозначно характеризует энергоемкость объемно-планировочных решений – чем ниже этот показатель, тем выше энергоэффективность:

K з = S о / S oбщ, (4)

где S общ – общая площадь наружных теплотеряющих ограждений;

S o – отапливаемая площадь здания.

Принципиально важно ввести в энергетический паспорт возможность учета характеристик проекта по регулированию, автоматизации и управлению инженерными системами:

Автоматика перевода систем отопления в дежурный режим;

Алгоритм управления системами вентиляции с изменением температуры приточного воздуха и его расхода;

Динамика систем холодоснабжения, в том числе с использованием аккумуляторов холода;

Управляемые системы освещения с датчиками присутствия и освещенности.

У проектировщиков должен быть инструмент оценки влияния энергосберегающих решений на показатели энергоемкости здания.

Целесообразно включить в состав энергетического паспорта раздел по контролю соответствия фактической энергоемкости здания проектным показателям. Это нетрудно выполнить, основываясь на интегральных показателях домового коммерческого учета тепловой и электрической энергии, расходуемой на системы инженерного обеспечения, с использованием фактических данных метеонаблюдений за год.

Для жилых зданий целесообразно внутренние тепловыделения относить к общей площади квартиры, а не к жилой. В типовых проектах соотношение жилой площади и общей меняется в широких пределах, а в распространенных зданиях со «свободной планировкой» оно вообще не определено.

Для общественных зданий целесообразно ввести показатель теплонапряженности режима эксплуатации и ранжировать его, например, на три категории в зависимости от недельного режима работы, энерговооруженности рабочего места и площади, приходящейся на одного сотрудника, и, соответственно, задавать средние тепловыделения. Имеется достаточная статистика по тепловыделениям оргтехники.

Если этот показатель не регламентировать, то введением произвольных коэффициентов использования оргтехники 0,4, неодновременности заполнения помещения 0,7 можно достичь в офисных помещениях показателя внутренних тепловыделений 6 Вт/м 2 (в стандарте – пример высотного здания). В разделе холодоснабжения этого проекта расчетная потребность в холоде не менее 100 Вт/м 2 , а осредненное значение внутренних тепловыделений задано на уровне 25–30 Вт/м 2 .

В Федеральном законе № 261-ФЗ «Об энергосбережении и повышении энергетической эффективности» поставлена задача маркировки энергоэффективности зданий как на стадии проектирования, так и в процессе эксплуатации.

Следовало бы в последующих редакциях стандарта учесть результаты дискуссий в НП «АВОК» об учете внутренних тепловыделений в жилых зданиях в расчетном режиме (определении установочной мощности систем отопления) и о настройке термостатов на температуру внутреннего воздуха в квартирах как оборудованных, так и не оборудованных поквартирными приборами учета.

Наработки специалистов НП «АВОК» – Ю. А. Табунщикова, В. И. Ливчака, Е. Г. Малявиной, В. Г. Гагарина, авторов статьи – позволяют рассчитывать на создание в ближайшем времени методики определения энергоемкости зданий, адекватно учитывающей основные факторы воздушно-теплового режима.

НП «АВОК» приглашает к сотрудничеству всех заинтересованных специалистов для решения этой актуальной задачи.

Литература

1. Рысин С. А. Вентиляционные установки машиностроительных заводов: Справочник. – М. : Машгиз, 1961.

2. Справочник по теплоснабжению и вентиляции в гражданском строительстве. – Киев: Госстройиздат, 1959.

3. МГСН 2.01-99. Энергосбережение в зданиях.

4. СНиП 23-02-2003. Тепловая защита зданий.

5. МГСН 4.19-2005. Временные нормы и правила проектирования многофункциональных высотных зданий и зданий-комплексов в городе Москве.