Электрический скат и электрический угорь. Электрические рыбы. Электрический скат - живая аккумуляторная батарея

Электрические рыбы . Люди ещё в глубокой древности обратили внимание, что некоторые рыбы как-то по особенному добывают себе пищу. И лишь совсем недавно, по историческим меркам, стало понятно, как они это делают. Оказывается есть такие рыбы, которые создают электрический разряд. Этот разряд парализует или убивает других рыб и даже совсем не маленьких животных.

Плывёт такая рыбина, плывёт никуда не торопясь. Как только недалеко от неё оказывается другая рыба, создаётся электрический разряд. Всё, обед готов. Можно подплывать и заглатывать парализованную или убитую электрическим током рыбу.

Как же это получается у рыб создавать электрический импульс? Дело в том, что в организме таких рыб имеются самые настоящие батарейки. Их количество и размеры у рыб разные, но принцип действия один и тот же. Именно по такому же принципу устроены современные аккумуляторные батарейки.

Собственно, современные батареи и созданы по образцу и подобию рыбных. Два электрода, между ними электролит. Этот принцип был однажды подсмотрен у электрического ската. много ещё интересных неожиданностей таит природа матушка!

Сегодня в мире насчитывается более трёхсот видов электрических рыб. Они имеют самые разные размеры и вес. Всех их объединяет способность создавать электрический разряд или даже целую серию разрядов. Но всё же считается, что самыми мощными электрическими рыбами являются скаты, сомы и угри.

Электрические скаты имеют плоскую голову и тело. Голова чаще в форме диска. Они имеют небольшой хвост с плавником. Электрические органы расположены по бокам головы. Ещё пара небольших электрических органов расположены на хвосте. Они есть даже у тех скатов, которые не относятся к электрическим.

Электрические скаты могут вырабатывать электрический импульс напряжением до четырёхсот пятидесяти вольт. Этим импульсом они могут не только обездвиживать, но и убивать небольших рыб. Человеку, если он попадёт в зону действия импульса, тоже мало не покажется. Но человек, скорее всего останется жив, хотя наверняка испытает неприятные в своей жизни моменты.

Электрические сомы , так же как и скаты, создают электрический импульс. Его напряжение может быть у крупных сомов, так же как и у скатов, до 450 вольт. При поимке такого сомика, так же можно получить весьма ощутимый удар током. Электрические сомы обитают в водоёмах Африки и достигают размеров до 1 метра. Их вес может быть до 23 килограммов.

Но, самая опасная рыба обитает в водоёмах Южной Америки. Это электрические угри . Они бывают очень немаленьких размеров. Взрослые особи достигают в длину трёх метров и веса до двадцати килограммов. Эти электрические гиганты могут создавать электрический импульс напряжением до одной тысячи двухсот вольт.

Импульсом с таким напряжением они могут убить и довольно крупных животных, оказавшихся некстати рядом. Такой же исход может ожидать и человека. Мощность электрического разряда достигает шести киловатт. Мало не покажется. Вот такие они — живые электростанции.

В глубинах морей и океанов обитает большое количество удивительных существ, среди которых скат и угорь. Эти создания прославились тем, что для защиты и охоты используют электричество. Однако большинство людей и представить не могут, каким образом живой организм способен выполнять роль мощной батареи.

Кто вырабатывает электричество?

Сразу в качестве интересного факта стоит отметить, что электричество вырабатывают все рыбы, просто 99% видов генерируют очень слабые заряды, не ощутимые при взаимодействии. Морские существа способны вырабатывать электричество благодаря особому устройству мышц, которые вырабатывают и накапливают электричество.

Некоторые виды в процессе эволюции научились аккумулировать большие заряды и бить ими противника. Наиболее преуспели в этом занятии скаты, угри, звездочеты, гимнархи, а также отдельный вид сомов.


Как рыбы вырабатывают электричество?

Все виды электрических морских существ вырабатывают электричество во время движения. За счет того, что мышцы постоянно меняют свою форму и взаимодействуют с окружением, они накапливают электричество. При этом, голова и хвост выступают в роли плюса и минуса соответственно. Это помогает удерживать заряд в мышцах, словно в батареи.

Подробнее разберем, что представляют собой мышцы для накапливания зарядов. Они могут отличаться внешне у каждого вида рыбы, но имеют схожую структуру. Мышцы состоят из столбиков, которые, в свою очередь, разбиты на пластины. Для накапливания электричества столбики соединены параллельно, а пластины последовательно. Между ними находится разность потенциалов, из-за чего при движении аккумулируется энергия, происходит накопление заряда.

Разность потенциалов на концах электрических органов может достигать 1200 вольт, а мощность разряда в импульсе — от 1 до 6 киловатт. Частота импульсов зависит от их назначения. Например, электрический скат испускает 10—12 импульсов, когда защищается, и от 14 до 562, когда нападает. Мощность напряжения в разряде у разных рыб колеблется от 20 до 600 вольт. Среди морских рыб самый «сильный» электрический орган у ската Torpedo maromata — он может генерировать разряд более 200 вольт. Электричество защищает его и от акул, и от осьминогов, а также позволяет охотиться на мелких рыб.

У пресноводных рыб разряды еще мощнее. Дело в том, что соленая вода лучше проводит электричество, чем пресная. Поэтому морским рыбам, чтобы оглушить противника, требуется меньше энергии. Одна из самых опасных пресноводных рыб — это электрический угорь из Амазонки. На его теле три электрических органа. Два из них для навигации и поиска добычи, а третий представляет собой мощнейшее оружие с напряжением более 500 вольт. Электрический удар такой силы не только убивает рыбу и лягушек, но даже может нанести серьезный вред человеку. Поэтому ловить амазонских угрей очень опасно. Для этого в реку загоняют стадо коров, чтобы угри истратили на них весь свой заряд. Только после этого люди заходят в воду.

Некоторые рыбы используют электричество для навигации. Например, нильский слоник или рыба-нож создают вокруг себя электромагнитное поле. Когда в него попадает посторонний объект, рыба сразу это чувствует. Такая навигационная система напоминает эхолокацию летучих мышей. Она позволяет хорошо ориентироваться в мутной воде. Как показали исследования, многие электрические рыбы настолько чувствительны к изменению электромагнитных полей, что способны «предвидеть» приближающееся землетрясение.

Доминик Стэтхем

Фото ©depositphotos.com/Yourth2007

Electrophorus electricus ) обитает в темных водах болот и рек в северной части Южной Америки. Это таинственный хищник, обладающий сложной системой электролокации и способный перемещаться и охотиться в условиях низкой видимости. Используя «электрорецепторы» для определения искажений электрического поля, вызванных его собственным телом, он способен обнаруживать потенциальную жертву, сам при этом оставаясь незамеченным. Он обездвиживает жертву с помощью сильнейшего электрического шока, достаточно сильного, чтобы оглушить такое крупное млекопитающее, как лошадь, или даже убить человека. Своей удлиненной округлой формой тела угорь напоминает рыбу, которую мы обычно называем муреной (порядок Anguilliformes); однако принадлежит к другому порядку рыб (Gymnotiformes).

Рыб, способных обнаруживать электрические поля, называют электрорецептивными , а способных генерировать мощное электрическое поле, таких как электрический угорь, называют электрогенными .

Как электрический угорь генерирует такое высокое электрическое напряжение?

Электрические рыбы – не единственные, кто способен генерировать электричество. Фактически все живые организмы делают это в той или иной мере. Мышцы нашего тела, к примеру, управляются мозгом с помощью электрических сигналов. Электроны, вырабатываемые бактериями, могут быть использованы для выработки электричества в топливных клетках, которые называются электроцитами. (см. таблицу ниже). И хотя каждая из клеток несет незначительный заряд, благодаря тому, что тысячи таких клеток собираются в серии, подобно батарейкам в фонарике, может быть выработано напряжение до 650 вольт (V). Если организовать эти ряды в параллели, можно получить электрический ток силой в 1Ампер (A), что дает электрический удар силой в 650 ватт (W; 1 W = 1 V × 1 A).

Каким образом угрю удается не оглушать самого себя электрическим током?

Фото:CC-BY-SA Steven Walling via Wikipedia

Ученые не знают точно, как ответить на этот вопрос, но результаты некоторых интересных наблюдений могут пролить свет на данную проблему. Во-первых, жизненно важные органы угря (например, мозг и сердце) расположены возле головы, вдалеке от органов, вырабатывающих электричество, и окружены жировой тканью, которая может действовать в виде изоляции. Кожа также имеет изолирующие свойства, поскольку, согласно результатам наблюдений, угри с поврежденной кожей более подвержены самооглушению электрическим ударом.

Во-вторых, наиболее сильные электрические удары угри способны наносить в момент спаривания, не нанося при этом вреда партнеру. Однако если удар такой же силы нанести другому угрю не во время спаривания, это может его убить. Это предполагает, что у угрей существует некая система защиты, которую можно включать и отключать.

Мог ли электрический угорь возникнуть в результате эволюции?

Очень трудно представить себе, как это могло бы произойти в ходе незначительных изменений, как того требует процесс, предложенный Дарвиным. В случае, если ударная волна была важной с самого начала, то вместо того, чтобы оглушить, она предупреждала бы жертву об опасности. Более того, чтобы в ходе эволюции выработать способность оглушать жертву, электрическому угрю пришлось бы одновременно вырабатывать и систему самозащиты. Каждый раз, когда возникала мутация, увеличивающая силу электрического удара, должна была возникать и другая мутация, улучшающая электроизоляцию угря. Кажется маловероятным то, что одной мутации было бы достаточно. К примеру, для того, чтобы передвинуть органы ближе к голове, понадобилось бы целая серия мутаций, которые должны были возникнуть одновременно.

Хотя немногие рыбы способны оглушать свою добычу, существует множество видов, использующих электричество низкого напряжения для навигации и общения. Электрические угри относятся к группе южно-американских рыб, известных под названием «ножетелки» (семейство Mormyridae), которые тоже используют электролокацию и, как считается, развили эту способность наряду со своими южно-американскими собратьями . Более того, эволюционисты вынуждены заявлять, что электрические органы у рыб эволюционировали независимо друг от друга восемь раз . Если учесть сложность их строения, поражает уже то, что эти системы могли развиться в ходе эволюции хотя бы один раз, не говоря уже о восьми.

Ножетелки из Южной Америки и химеровые из Африки используют свои электрические органы для определения местонахождения и коммуникации, и используют ряд различных видов электрорецепторов. В обеих группах есть виды, продуцирующие электрические поля разных сложных форм волны. Два вида ножетелок, Brachyhypopomus benetti и Brachyhypopomus walteri настолько похожи друг на друга, что их можно было бы отнести к одному виду, однако первый из них вырабатывает ток постоянного напряжения, а второй – ток переменного напряжения. Эволюционная история становится еще более примечательной, если копнуть еще глубже. Для того, чтобы их аппараты электролокации не мешали друг другу и не создавали помех, некоторые виды используют специальную систему, с помощью которой каждая из рыб меняет частоту электрического разряда. Примечательно, что эта система работает практически так же (используется такой же вычислительный алгоритм), как у стеклянной ножетелки из Южной Америки (Eigenmannia ) и африканской рыбы аба-аба (Gymnarchus ). Могла ли такая система устранения помех независимо развиться в ходе эволюции у двух отдельных групп рыб, обитающих на разных континентах?

Шедевр Божьего творения

Энергетический агрегат электрического угря затмил все творения человека своей компактностью гибкостью, мобильностью, экологической безопасностью и способностью к самовосстановлению. Все части этого аппарата идеальным образом интегрированы в лощеное тело, что дает угрю возможность плыть с большой скорость и проворством. Все детали его строения – от крохотных клеток, вырабатывающих электричество, до сложнейшего вычислительного комплекса, анализирующего искажения производимых угрем электрических полей, - указывают на замысел великого Создателя.

Как электрический угорь генерирует электричество? (научно-популярная статья)

Электрические рыбы генерируют электричество подобно тому, как это делают нервы и мышцы в нашем теле. Внутри клеток-электроцитов особые энзимные протеины под названием Na-K ATФаза выкачивают натриевые ионы через клеточную мембрану, и всасывают ионы калия. (‘Na’ – химический символ натрия, а ‘K’ – химический символ калия». ‘ATФ’ – аденозинтрифосфат – энергетическая молекула, используемая для работы насоса). Дисбаланс между ионами калия внутри и снаружи клетки приводит к возникновению химического градиента, который снова выталкивает ионы калия из клетки. Подобным образом, дисбаланс между ионами натрия порождает химический градиент, который затягивает ионы натрия обратно в клетку. Другие протеины, встроенные в мембрану, действуют в виде каналов для ионов калия, пор, позволяющих ионам калия покинуть клетку. По мере того, как ионы калия с позитивным зарядом накапливаются снаружи клетки, вокруг клеточной мембраны нарастает электрический градиент, при чем наружная часть клетки имеет более позитивный заряд, чем ее внутренняя часть. Насосы Na-K ATФазы (натрий-калиевой аденозинтрифосфатазы) построены таким образом, что они выбирают лишь один позитивно заряженный ион, иначе негативно заряженные ионы также стали бы перетекать, нейтрализуя заряд.

Большая часть тела электрического угря состоит из электрических органов. Главный орган и орган Хантера отвечают за выработку и накопление электрического заряда. Орган Сакса вырабатывает электрическое поле низкого напряжения, которое используется для электролокации.

Химический градиент действует таким образом, что выталкивает ионы калия, а электрический градиент втягивает их обратно. В момент наступления баланса, когда химические и электрические силы упраздняют друг друга, снаружи клетки будет находиться примерно на 70 милливольт больше позитивного заряда, чем внутри. Таким образом, внутри клетки оказывается негативный заряд в -70 милливольт.

Однако большее количество протеинов, встроенных в клеточную мембрану, обеспечивают каналы для ионов натрия – это поры, которые позволяют ионам натрия снова попадать в клетку. В обычном состоянии эти поры перекрыты, однако когда электрические органы активируются, поры раскрываются, и ионы натрия с позитивным зарядом снова поступают в клетку под воздействием градиента химического потенциала. В данном случае баланс достигается, когда внутри клетки собирается позитивный заряд до 60 милливольт. Происходит общее изменение напряжения от -70 до +60 милливольт, и это составляет 130 mV или 0.13 V. Этот разряд происходит очень быстро, примерно за одну миллисекунду. И поскольку в серии клеток собрано примерно 5000 электроцитов, благодаря синхронному разряду всех клеток может вырабатываться до 650 вольт (5000 × 0.13 V = 650).

Насос Na-K ATФазы (натрий-калиевой аденазинтрифосфотазы). За каждый цикл два иона калия (K +) поступают в клетку, а три иона натрия (Na +) выходят из клетки. Этот процесс приводится в движение энергией АТФ молекул.

Глоссарий

Атом или молекула, несущий электрический заряд благодаря неравному количеству электронов и протонов. Ион будет иметь негативный заряд, если в нем содержится больше электронов, чем протонов, и позитивный заряд – если в нем содержится больше протонов, нежели электронов. Ионы калия (K +) и натрия (Na +) имеют позитивный заряд.

Градиент

Изменение какой-либо величины при перемещении от одной точки пространства к другой. Например, если вы отходите от костра, температура понижается. Таким образом, костер генерирует температурный градиент, уменьшающийся с расстоянием.

Электрический градиент

Градиент изменения величины электрического заряда. Например, если снаружи клетки содержится большее количество позитивно заряженных ионов, чем внутри клетки, электрический градиент будет проходить через клеточную мембрану. Благодаря тому, что одинаковые заряды отталкиваются друг от друга, ионы будут двигаться таким образом, чтобы сбалансировать заряд внутри и снаружи клетки. Передвижения ионов из-за электрического градиента происходят пассивно, под воздействием электрической потенциальной энергии, а не активно, под воздействием энергии, поступающей из внешнего источника, например из АТФ-молекулы.

Химический градиент

Градиент химической концентрации. Например, если снаружи клетки содержится большее количество ионов натрия, чем внутри клетки, то химический градиент натриевого иона будет проходить через клеточную мембрану. Из-за произвольного движения ионов и столкновений между ними существует тенденция, что ионы натрия будут двигаться от более высоких концентраций к более низким концентрациям до тех пор, пока не будет установлен баланс, то есть пока по обе стороны мембраны не окажется одинаковое количество ионов натрия. Это происходит пассивно, в результате диффузии. Движения обусловлены кинетической энергией ионов, а не энергией, получаемой из внешнего источника, такого как АТФ молекула.

Многим читателям сайта про животных сайт известно, что существуют рыбы, имеющие возможность бить электрическим током (в прямом смысле), но отнюдь не все знают, каким образом это осуществляется. Предлагаем рассмотреть двух наиболее знаменитых морских представителей, которые вырабатывают ток: электрического ската и электрического угря. Вы узнаете:

  • опасен ли для человека ток этих электрических рыб;
  • как устроены органы, вырабатывающие электричество у ската и угря;
  • как охотятся и ловят добычу скат и угорь;
  • как живые рыбы связаны с праздником Нового года.

Электрический скат - живая аккумуляторная батарея

Электрические скаты в основном некрупные - от 50 до 60 см, однако есть такие особи, которые достигают в длину 2 м. Некрупные представители этих рыб создают незначительный электрический заряд, а в свою очередь большие скаты осуществляют разряды по 300 вольт. Органы особи, производящие ток, составляют 1/6 часть туловища и очень развиты. Они находятся с обоих боков - занимают место между плавником груди и головной частью, и рассмотреть их можно со спинной и брюшной части.

Внутренние органы рыбы, производящие электричество, имеют следующее строение. Некоторое количество столбиков, которые составляют электрические пластины и низ пластины, как и всего органа, носит отрицательный заряд, а верх заряжен положительно.

Во время охоты скат поражает добычу, обхватив ее плавниками, где находятся органы, производящие электричество. В течение этого процесса осуществляется электрический заряд, и добыча погибает от удара электричеством. Скат имеет сходство с аккумуляторной батареей . Если он использует заряд целиком, то ему понадобится несколько но то, чтобы вновь "зарядиться".

Скат без заряда безопасен, тем не менее, ежели он имеет заряд, тогда человек может серьезно пострадать от сильного электрического разряда . Происшествий с летальным исходом не выявлено, хотя у того, кто дотронулся до ската, может понизиться давление, произойти нарушения сердечного ритма, а также могут появиться спазмы, а в пораженной зоне появляется отечность местных тканей. Скат малоактивен и в основном живет на дне, поэтому, чтобы не повстречать его в водной среде, необходимо проявить внимание, находясь на мелководье.

Во времена Древного Рима, наоборот, электрические разряды признавались (и признаются сейчас в медицине) оздоровительными . Считалось, что электрический разряд мог снять головную боль и облегчить подагру. Даже сегодня на берегах средиземноморья люди в возрасте целенаправленно ходят босоногими по мелкой воде, чтобы с помощью ударов током облегчить ревматизм и подагру.

Электрический угорь зажег гирлянды на новогодней елке

А теперь заметка хотя и про рыб, но касается такого праздника, как Новый год! Казалось бы, как сочетается живая рыба и новогодняя елка? А вот как. Читайте далее.

Большинство представителей из группы электрического угря длиной от 1 до 1,5 м, но существуют виды, которые достигают трех метров. У таких особей сила удара достигает 650 вольт. Люди, пораженные ударом тока в воде, могут потерять сознание и утонуть. Электрический угорь является одним из наиболее опасных представителей реки Амазонки. Угорь приблизительно раз в 2 минуты всплывает, чтобы наполнить легкие воздухом. Он очень агрессивен. Если приблизиться к угрю на дистанцию менее трех метров, то он предпочитает не укрываться, а сразу атаковать. Следовательно, людям, которые близко увидели угря, должны поскорее уплыть как можно дальше.

Органы угря, отвечающие за ток, обладают аналогичным строением с органами ската , но имеют иное расположение. Они представляют два удлиненных ростка, имеющие продолговатый вид и составляют 4/5 тела угря в целом и имеют массу, занимающий практически 1/3 веса туловища. Передняя часть угря носит положительный заряд, а задняя, соответственно, отрицательный. У угрей к старости снижается зрение, именно из-за этого свою жертву они поражают, испуская слабые удары током. Угорь не нападает на добычу, ему достаточно мощного заряда, чтобы все некрупные рыбы погибли от удара током. Угорь приближается к своей добыче, когда она уже мертва, схватывает ее за голову, а затем проглатывает.

Угря нередко можно увидеть в аквариуме, так как они сравнительно быстро привыкают к искусственным условиям. Конечно, держать дома такую рыбу - это потруднее, чем тритонов разводить . Для того, чтобы экспонировать их возможности, к резервуару крепят лампу и опускают провода в воду. Во время кормежки свет загорается. В Японии в 2010 году был проведен опыт: рождественская елка была освещена с использование тока, исходящего от угря, который находился в особой емкости и выбрасывал ток. Даже угорь и его электроток может быть полезным, если направить уникальные природные способности этой рыбы в нужное русло.