Разработка технологического процесса изготовления. Разработка технологических процессов изготовления деталей машин

номер обозначений на плане;

наименование оборудований или устройства;

характеристика оборудования (основные размеры, грузоподъемности, площадь и

мощность электродвигателей оборудования и устройств.

При разработке общей компоновки и планировки сборочного цеха (участка) необходимо руководствоваться методическими положениями по разработке технологических планировок, нормами технологического проектирования, руководящими материалами по охране труда и техники безопасности, производственной санитарии и пожарной безопасности , а так же системой стандартов безопасности труда (ССБТ):

ГОСТ 12.1.004-85, ГОСТ 12.3.002-75, ГОСТ 12.2.002-91.

ГОСТ 12.2.029-88, ГОСТ 12.1.003-83, ГОСТ 12.1.001-89,

ГОСТ 3.1120-83.

ТЕМА 14. РАЗРАБОТКА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ИЗГОТОВЛЕНИЯ ДЕТАЛИ (8 ЧАСОВ ЛЕКЦИИ)

Разработка технологических процессов изготовления деталей

Задача разработки технологического процесса изготовления детали заключается в нахождении для данных производственных условий оптимального варианта перехода от полуфабриката, поставляемого на машиностроительный завод, к готовой детали. Выбранный вариант должен обеспечивать требуемое качество детали при наименьшей ее себестоимости.

Технологический процесс изготовления детали рекомендуется разрабатывать в следующей последовательности:

1)изучить по чертежам служебное назначение детали и проанализировать соответствие ему технических требований и норм точности;

2)выявить число деталей, подлежащих изготовлению в единицу времени и по неизменяемому чертежу, наметить вид и форму организации производственного процесса изготовления деталей;

3)выбрать полуфабрикат, из которого должна быть изготовлена деталь; 4)выбрать технологический процесс получения заготовки, если

неэкономично или физически невозможно изготовлять деталь непосредственно из полуфабриката;

5)обосновать выбор технологических баз и установить последовательность обработки поверхностей заготовки;

6)выбрать способы обработки поверхностей заготовки и установить число переходов по обработке каждой поверхности исходя из требований к качеству детали;

8) оформить чертеж заготовки;

9) выбрать режимы обработки, обеспечивающие требуемое качество детали и производительность;

10)пронормировать технологический процесс изготовления детали; 11)сформировать операции из переходов и выбрать оборудование для их

осуществления; 12)выявить необходимую технологическую оснастку для выполнения

каждой операции и разработать требования, которым должен отвечать каждый вид оснастки (приспособления для установки заготовки и режущего инструмента, режущий инструмент, измерительный инструмент и пр.);

13) разработать другие варианты технологического процесса изготовления детали, рассчитать их себестоимость и выбрать наиболее экономичный вариант;

14)оформить технологическую документацию;

15)разработать технические задания на конструирование нестандартного оборудования, приспособлений, режущего и измерительного инструмента.

При разработке технологического процесса изготовления детали используют чертежи сборочной единицы, в состав которой входит деталь, чертежи самой детали, сведения о количественном выпуске деталей, стандарты на полуфабрикаты и заготовки, типовые и групповые технологические процессы, технологические характеристики оборудования и инструментов, различного рода справочную литературу, руководящие материалы, инструкции, нормативы.

Технологический процесс разрабатывают либо с привязкой к действующему, либо для создаваемого производства. В последнем случае технолог обладает большей свободой в принятии решений по построению технологического процесса и выбору средств для его осуществления.

Выбор вида и формы организации производственного процесса изготовления деталей

Вид и форму организации производственного процесса изготовления деталей выбирают в соответствии с их количественным выпуском. Прежде всего необходимо выяснить возможность использования наиболее производительных вида и формы организации производственного процесса (непрерывного или переменного потока). Непрерывно-поточное производство можно организовать при условии, что технологическое оборудование будет полностью загружено изготовлением деталей одного наименования. В тех случаях, когда относительно небольшое число малотрудоемких деталей делают неэкономичным использование непрерывно-поточного производства, детали объединяют в группы по признакам близости служебного назначения, конструктивных форм, размеров, технических требований, материалов. Объединение деталей в

группы позволяет использовать метод групповой технологии и организовать переменно-поточное производство.

Там, где незначительное число одноименных деталей делает неэкономичным их изготовление поточными методами, остается возможность создания технологически замкнутых участков с использованием высокопроизводительного оборудования, технологической оснастки и применением метода групповой технологии.

В мелкосерийном и единичном производстве приходится организовывать участки, объединяющие оборудование со сходным служебным назначением.

Выбор полуфабриката и технологического процесса изготовления заготовок

Задачей разработчика технологического процесса на этом этапе является нахождение кратчайшего и экономичного пути превращения полуфабриката, производимого металлургической, химической и другими отраслями промышленности, в готовую деталь.

Для изготовления деталей машиностроительные заводы используют разнообразные виды прокатов черных и цветных металлов, стальные слитки, чугун и алюминий в виде чушек, порошковые металлические материалы, гранулированные и порошковые пластические материалы и пр. При избранном конструктором материале детали возможны различные пути превращения полуфабриката в готовую деталь.

Получать детали в готовом виде в ряде случаев удается методами точного литья, пластического деформирования и прессованием металлических порошков. Те же результаты достигаются при изготовлении деталей из пластмасс с помощью литьевых машин.

Если для изготовления детали нельзя подобрать полуфабрикат, который можно сразу превратить в готовую деталь, то приходится сначала превращать полуфабрикат в заготовку, а затем – заготовку в готовую деталь. В таких случаях приходится выбирать полуфабрикат, обеспечивающий экономичное получение заготовки, и изыскивать способ получения заготовки, позволяющий превратить ее в деталь с наименьшими затратами труда и материала.

В современном машиностроении для получения заготовок деталей используют разнообразные технологические процессы и их сочетания: различные способы литья (в землю, в опоках, кокильное,

центробежное, по выплавляемым моделям, в оболочковые формы, под давлением и др.), различные способы пластического деформирования металлов (свободная ковка, ковка в подкладных штампах, штамповка на молотах и прессах, периодический и поперечный прокат, высадка, выдавливание и др.), резка, сварка, комбинированные способы штамповки – сварки, литья – сварки, порошковая металлургия и пр.

Главными факторами, от которых зависит выбор технологического процесса получения заготовки, являются следующие:

конструктивные формы готовой детали; материал, из которого должна быть изготовлена деталь; размеры и масса заготовки;

количественный выпуск деталей в единицу времени, по неизменяемым чертежам и объемы партий;

стоимость полуфабриката, используемого для получения заготовки; себестоимость заготовки, получаемой выбранным способом; расход

материала и себестоимость превращения заготовки в готовую деталь. Критерием избираемого процесса получения заготовки служит ее

себестоимость с учетом затрат на изготовление детали.

Изучение служебного назначения детали. Анализ технических требований и норм точности

Разработка технологического процесса изготовления любой детали должна начинаться с глубокого изучения ее служебного назначения и критического анализа технических требований и норм точности, заданных чертежом.

Служебное назначение детали может быть выявлено в результате изучения чертежей сборочной единицы (машины), в состав которой входит деталь. Выясняя назначение детали и ее роль в работе сборочной единицы, необходимо разобраться в функциях, выполняемых ее поверхностями. Напоминаем, что, с точки зрения выполняемых функций, поверхности детали могут быть исполнительными, основными или вспомогательными базами, либо свободными.

Анализ соответствия технических требований и норм точности служебному назначению детали следует вести в двух направлениях. Прежде всего должна быть сделана оценка технических требований и норм точности с качественной стороны. Эта оценка касается правильности формулировок технических требований, правильности размерных связей, установленных между поверхностями детали, наличия необходимых размеров, формы задания допусков, достаточности технических требований и норм точности и пр.

Проводя качественный анализ, в первую очередь необходимо обратить внимание на правильность задания относительного положения поверхностей в комплектах исполнительных поверхностей

Анализируя правильность простановки размеров в чертеже детали, следует руководствоваться положением о том, что на чертеже должны быть проставлены те размеры, которыми деталь непосредственно участвует в работе сборочной единицы или машины. Для нахождения этих размеров надо выявить задачи, в решении которых деталь участвует своими размерами, и вскрыть конструкторские размерные цепи, с помощью которых эти задачи решаются.

При анализе технических требований и норм точности с качественной стороны нельзя упускать из виду правильность формулировок технических

требований, формы задания норм точности, их достаточность. Нельзя, например, задавать в миллиметрах допуск, ограничивающий относительный поворот поверхностей детали, без указания длины, на которой допускается указанное отклонение.

Анализ технических требований и норм точности служебному назначению детали с количественной стороны должен подтвердить или опровергнуть правильность значений установленных норм и выявить их требуемые значения.

Если технологическим процессом сборки изделия предусмотрено достижение точности замыкающего звена одним из методов взаимозаменяемости, то, решив обратную задачу в отношении полей допусков и координат их середин, можно выяснить соответствие допуска на интересующий размер требованиям точности замыкающего звена. При отсутствии такого соответствия необходимо перераспределить допуск замыкающего звена между составляющими звеньями, добившись необходимого соответствия, и скорректировать значение допуска на анализируемый размер детали.

Если точность замыкающего звена намечено обеспечивать методами пригонки или регулирования, то целесообразность значения допуска, установленного на анализируемый размер детали, оценивается с экономических позиций.

О важности проведения анализа соответствия технических требований

и норм точности служебному назначению детали можно судить по рассмотрению примера, взятого из практики машиностроения. При отладке технологического процесса изготовления подшипников качения в автоматизированном производстве долгое время не удавалось достичь их требуемого качества. Как выяснилось впоследствии, причиной этого были неправильно сформулированные технические требования. Например, к наружному кольцу конического роликоподшипника были предъявлены, в числе прочих, следующие технические требования: 1) торцовая поверхность А кольца должна быть перпендикулярна к оси цилиндрической наружной

поверхности, допустимое отклонение 0,004 мм; 2) отклонение от параллельности торцов А и Б н е должно превышать 0,02 мм. На рис. 11.15,б показаны размеры и технические требования, заданные рабочим чертежом.

Рис. 11.15. Роликовый подшипник, требования к относительному положению поверхностей наружного кольца согласно рабочему чертежу и в соответствии с его служебным назначением

Анализируя служебное назначение кольца и функции, используемые его поверхностями, можно сделать вывод о том, что поверхность А и наружная цилиндрическая поверхность являются основными установочной и двойной опорной базами (рис. 11.15,а) . В соответствии с правилами установления относительного положения

баз, составляющих комплект, ось цилиндрической поверхности кольца должна быть перпендикулярна к поверхности А , а не наоборот.

Что касается относительного положения торцов А иБ , то избранная форма задания технического требования внесла неопределенность в выбор начала отсчета. ПоверхностьБ является свободной, и она должна быть параллельна поверхностиА как основной установочной базе детали. Из того, как были сформулированы технические требования, можно прийти и к абсурдному заключению о том, что поверхностьА должна быть одновременно перпендикулярна к оси цилиндрической поверхности и параллельна торцуБ. Формулировки обоих технических требований имеют еще один недостаток: не указаны длины, к которым должны быть отнесены нормы отклонений от перпендикулярности и параллельности.

Недочеты в формулировках технических требований привели к неправильному базированию заготовок колец в процессе обработки, что стало причиной несогласованности в относительном положении поверхностей изготовленных колец. Технологический процесс удалось отладить лить после того, как базирование колец на операциях было приведено в соответствие с техническими требованиями, изложенными следующим образом.

1.Ось наружной цилиндрической поверхности должна быть перпендикулярна к поверхности торца А (рис. 10.9,в) ; допустимое отклонение 0,004 мм на длине 20 мм.

2.Допустимое отклонение торцовой поверхности Б от параллельности поверхности торцаА не должно быть более 0,02 мм на диаметре кольца.

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ
МАШИНОСТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ (МАМИ)
УНИВЕРСИТЕТ МАШИНОСТРОЕНИЯ
________________________________________________
Кафедра «Стандартизация, метрология и сертификация»

РАЗРАБОТКА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА
ИЗГОТОВЛЕНИЯ ДЕТАЛИ

Методические указания

Москва 2015

В.И. Колчков

Различные виды механической обработки и примеры получения заготовок можно посмотреть .

Методические указания предназначены студентам машиностроительных специальностей для выполнения курсовой работы по дисциплине "Технология машиностроения отрасли".

Рассмотрен порядок выполнения и защиты курсовой работы, содержание и объем её графической части и пояснительной записки, приводится необходимый библиографический и справочный материал. Даны примеры расчета режимов обработки и оформления операционных эскизов.

1. Цель и задачи курсового проектирования

Курсовое проектирование является необходимым этапом практического применения студентом совокупности теоретических знаний для решения профессиональных технологических и конструкторских задач и подготовки к дипломному проектированию. Курсовое проектирование включает курсовую работу, целью которой является приобретение студентами практических навыков самостоятельного проектирования технологических процессов (ТП) изготовления типовых, средней сложности, содержащих не менее пяти основных операций, деталей отраслевого машиностроения. При этом решаются следующие задачи:

  • анализ ТУ на изготовление детали;
  • технологический контроль рабочего чертежа;
  • выбор способа получения исходной заготовки;
  • выбор технологических баз;
  • разработка маршрута обработки, по каждой операции указать элементы СПИД. Схемы обработки можно посмотреть
  • таблицы отражающие взаимосвязь шероховатости поверхности и точности обработки
  • разработка операционной технологии, включая составление последовательности переходов в операции, расчет припусков и операционных размеров для ряда технологических переходов, выбор оборудования и технологической оснастки, расчет режимов обработки, расчет основного (машинного) времени, информация .

В курсовой работе возникает ряд задач, которые могут быть решены с применением ПК в системах автоматизированного проектирования (САПР). Наиболее типичные из них:

  • оптимизация операционных режимов;
  • составление программ для станков с ЧПУ;
  • оптимальный раскрой листовых заготовок;
  • технико-экономическое обоснование технологического процесса.

2. Тематика и объект курсовой работы

Темы курсовых работ (КР) соответствуют разработке прогрессивных ТП на детали заготовительного и механического производства машиностроения. Предусматривается возможность выполнения технологических, метрологических, конструкторских и других научных исследований.

Объектом курсовой работы служат чертежи деталей, являющиеся типовыми для машин или агрегатов. Это валы, втулки, зубчатые колеса, обечайки, днища, фланцы различных конструктивных разновидностей и др.

Курсовая работа состоит из пояснительной записки и графической части - листа маршрутно-операционной технологии.

3. Общее содержание и объем работы

В пояснительной записке студент должен разработать следующие вопросы:

  1. самостоятельно выбрать масштаб производства (индивидуальное, серийное, массовое), используя при этом представление о своей будущей специальности;
  2. провести анализ точности обработки детали и при необходимости уточнить требования чертежа, обозначение шероховатости и допусков формы можно посмотреть ; таблицы значений основных отклонений и допусков ;
  3. оценить технологичность детали;
  4. выбрать и обосновать способ получения заготовки;
  5. выбрать технологические базы и сопоставить их с конструкторскими и метрологическими базами, сделать заключение о соблюдении принципа единства баз;
  6. составить 2-3 размерные цепи (РЦ), определяющие наиболее точные (ответственные) размеры детали, сделать заключение о соблюдении принципа наикратчайшей размерной цепи;
  7. составить рациональный маршрут обработки детали;
  8. подробно описать не менее 3х различных операций: а) выбрать средства технологического оснащения (станки, приспособления, инструменты, в т.ч. контрольные); б) наметить число переходов на каждой операции;
  9. выбрать ответственную операцию и разработать элементы операционной технологии: а) для 2х-3х переходов провести расчёт режимов обработки; б) рассчитать припуски и технологические размеры; в) рассчитать основное (машинное) время;
  10. выполнить пояснения к технологическим эскизам и 2-3м приспособлениям.

Графическая часть представляет собой маршрутно-операционную карту, оформленную по установленной форме.

Подробно дается описание только основных формообразующих и отделочных операций, т.е. таких, при выполнении которых про­исходит изменение размеров, формы или качества отдельных поверхностей детали. Остальные операции, например, термическая, транспортная, балансировка, правка и другие только обозначаются в общем маршруте. Им дают порядковый номер, наименование и указывают их краткое содержание. Например: 10.Копировальная. Проверить размеры по чертежу; 15. Термическая. Закалить до HRC 35-45.

Студент разрабатывает единичный технологический процесс (ТП), взяв за основу типовой или групповой ТП.

4. Разработка и оформление пояснительной записки

4.1. Анализ технологичности детали

Понятие «технологичность детали» содержится в комплексе стандартов ЕСТПП, можно посмотреть также с.197-198 в /1/.

Технологичность детали – совокупность свойств и показателей, определяющих возможность её изготовления с наименьшими затратами при достижении требований к точности, указанных в чертеже. Технологичность детали можно предварительно оценить, сравнивая деталь с имеющимися аналогами. Окончательное решение о технологичности детали можно принять после разработки ТП и проведения технико-экономических расчётов.

Анализируя деталь, студент должен сопоставить её со стандарт­ными унифицированными или оригинальными конст­руктивными решениями. При этом необходимо учитывать совокупность конструктивных элементов детали: образующих линий и поверхностей; взаимного расположения поверхностей, осей; наличие внутренних отверстий, полостей и др.; требования к точности; контролепригодность параметров точности и в итоге сделать предложения по методам и средствам формообразования поверхностей, а также методам и средствам контроля.

Оценка технологичности конструкции детали производится количественными и качественными показателями. Для количественной оценки технологичности конструкции изделия применяют показатели, предусмотренные ГОСТ 14.201-83. Основные из них: трудоемкость, материалоемкость, унификация элементов детали, требования к точности и качеству поверхностей.

Качественную оценку технологичности конструкции детали можно выразить словами. Необходимо дать предложения по улучшению технологичности детали и иллюстрировать их эскизами, схемами и привести в пояснительной записке.

4.2. Выбор вида заготовки и способа её получения

Правильный выбор заготовки – важнейший этап построения ТП изготовления изделия. Вид заготовки и способ её получения оказывает существенное влияние на характер технологического процесса, трудоемкость и экономичность обработки. Выбор способа получения заготовки непосредственно зависит от конструкции и материала детали, её раз­меров, требований к точности, объёма производства и других факторов. Исходя из необходимости максимального приближения формы и размеров заготовки к параметрам готовой детали, следует применять прогрессивные методы и средства получения заготовок. К ним например можно отнести литьё по выплавляемым моделям, литьё в оболочковые формы, литьё под давлением, штамповка в закрытых штампах, периодический прокат, профильный прокат и др. Прогрессивные виды получения заготовок обеспечивают снижение затрат на механическую обработку и повышают качество конечной продукции.

Способ получения заготовки можно выбрать, руководствуясь следующими рекомендациями:

  • валы при разнице диаметров ступеней примерно до 10 мм целесообразно изготовлять из проката - круглой горячекатаной стали. При большей разнице заготовку следует выполнять ковкой в подкладных открытых штампах или горячей объемной штамповкой в закрепленных открытых штампах;
  • заготовку чугунных втулок, фланцев, шестерен и других деталей, имеющих форму тел вращения с осевым отверстием, получают литьем.
  • отверстия в чугунных деталей проливают, если его диаметр детали 30 мм и более.
  • стальные детали диаметром до 60-70 мм изготавливают из горячекатаных прутков или заготовок, отре­занных от горячекатаного прутка, разрезку прутка на заготовки применяют, когда необходимый наружный диаметр прутка больше, чем отверстие в шпинделе токарного или револьверного станка;
  • заготовки для деталей диаметром большем 60-70 мм, целесообразно получать ковкой, горячей объемной штампов­кой с прошивкой отверстия диаметром 30 мм и более. В качестве заготовок также используются цельнотянутые трубы;
  • заготовки для чугунных рычагов, вилок, кронштейнов, корпусных деталей получают литьем в т.ч. в земляные формы;
  • заготовки для стальных деталей, указанных в предыдущем пункте, получают литьем или обычно свободной ковкой и штам­повкой;
  • фланцы сосудов и аппаратов изготавливают из поковок, штампо­вок, профильного проката, бандажных колец, плоские фланцы изго­тавливают из листового проката.

Широко применяются таже методы изготовления заготовок фланцев из листа: резка листа на прямые полосы с последующей их гибкой до необходимого радиуса, вырезка из листа секторов с последующей их сваркой /3/,с.103-106;

Обечайки, днища, элементы контактных устройств (тарелок), бортшайбы и другие изготавливают из листового проката (в отдельных случаях обечайки, бортшайбы, патрубки изготавливают из труб). Трубные решетки изготавливают из листового проката, поковок. Заготовки могут быть цельные и составные из 2, 3,4 частей, с последующей сваркой и 100% контролем.

Выбрав метод получения заготовки, необходимо нанести контур заготовки сплошными тонкими линиями на чертеж детали. В записке необходимо дать краткие сведения о заготовке и описание технологического способа её получения с указанием размеров и допусками на размеры.

При выборе технологических способов получения заготовок необходимо использовать /1/:

  • заготовки отливки (с.116-134);
  • кованые и штампованные заготовки (c.134-168);
  • заготовки из проката (с.168-174);
  • заготовки из листового проката можно найти в /3/, с.25-43.

4.3. Выбор технологических баз

Выбор технологических баз решается одновременно с выбором метода полу­чения заготовки. Первые операции – создание чистовых баз для чего в заготовке предусматриваются черновые поверхности.

Выбор схемы базирования зависит от конструкторских и техно­логических требований. Выбранная схема в значительной степени предопределяет последовательность обработки, конструкцию приспособления, достижение заданной точности, производительность.

При разработке технологического процесса для каждой операции выбирается исходные (определенные) базы и проставляются исходные, (операционные) размеры. Это наиболее ответственный этап разработки технологического процесса и проектирования приспособлений.

При выборе баз руководствуются следующими рекомендациями: соблюдение принципа единства баз, т.е. по возможности обеспечивать совмещение технологической и конструкторской баз. Это значит задавать положение обрабатываемой поверхности по возможности теми же размерами, которые проставлены на чертеже детали.

Отступление от этих правил приводит к ужесточению допусков на исходные размеры, так как вместо конструкторских размеров приходится вводить технологические размеры, на которые назначаются меньшие допуски. Во-вторых, технологическая база, по возможности, должна обеспечивать неизменность положения заготовки в процессе её об­работки, т.е. должна быть постоянной.

Способ базирования заготовки (детали) определяется, в основном, её формой. Используются типовые способы базирования заготовок, включающие в себя поверхности или совокупность поверхностей трех видов: плоскость, цилиндрическое отверстие и цилиндрическая наружная поверхность,

4.4. Разработка маршрутного технологического процесса

Построение маршрутной технологии зависит от конструктивно-технологических особенностей детали и требований точности.

Детали машин, как правило, получаются в результате механической обработки заготовок на металлорежущих станках /1/, с.224-452. Технология обработки деталей аппаратов приводится в литературе /3/.

При разработке технологического процесса изготовления детали, необходимо следовать рекомендациям и последовательности действий /1/, с.199-200:

  • обработка базовых поверхностей;
  • черновая обработка, при которой снимают наибольшую величину припуска;
  • обработка тех поверхностей, которые не снижают жест­кость обрабатываемой заготовки (детали);
  • обработка поверхностей, которые не требуют высокой точности;
  • отделочные операции следует выносить к концу технологического процесса обработки, за исключением тех случаев, когда поверхности служат базой для последующих операций;
  • обрабатывать наибольшее количество поверхностей детали за одну установку и др.

После утверждения маршрутной технологии с руководителем-консультантом согласовываются и подробно разрабатываются операции с обоснованием выбора оборудования и технологической оснастки, обрабатывающего инструмента, межоперационных припусков, режимов обработки, расчеты основного (машинного) времени.

В дальнейшем в маршрутную технологию могут быть внесены необходимые уточнения.

Операционную технологию разрабатывают на основные операции, количество которых согласовывается с консультантом.

Проектирование операций связано с разработкой их структуры, выбором оборудования, приспособлений, с назначением режимов обработки, определением нормы времени.

ГОСТ 3.1702-79, ГОСТ З.170З-79. Примеры записи переходов приведены в табл.1.

В целях исключения текстовой записи вспомогательных переходов при базировании и закреплении следует применять условные обозначения опор и режимов, установленные стандартом /1/ , с.49-51.

В записке дается пояснение к выбору и методике построения операции. Исключается повторение полного содержания операций из маршрутно-операционной технологии в пояснительной записке.

Порядок переходов назначают так, чтобы обеспечить наибольшую экономичность и производительность выполнения операции.

4.5.1. Определение припусков и операционных размеров

Рекомендуется определить припуски общие и промежуточные на обработку одной поверхности: наружной поверхности вращения или отверстия. Общий припуск на обработку поверхности равен сумме промежуточных припусков по всем переходам обработки. Припуск на обработку поверхностей детали может быть назначен по соответствующим справочным таблицам, ГОСТам или на основе расчетно-аналитического метода определения припусков.

Расчет припусков на обработку и порядок определения предельных промежуточных размеров по технологическим переходам и окончательных размеров различных заготовок производится по справочнику технолога-машиностроителя /l/ , с.I75-I96.

4.5.2. Выбор технологического оборудования и технологичес­кой оснастки

Для условий единичного или мелкосерийного производства, обработку необходимо вести на универсальном оборудовании, стремясь к более полному использованию его возможностей. Чтобы избегать трудоемких переустановок крупногабаритных и тяжелых заготовок, черновую и чистовую обработку таких заготовок выполняют за одну операцию. Наи­более точные станки используют для чистовой и отделочной обра­ботки, выделяемые в отдельные операции.

Типы металлорежущих станков и технические их характеристики приведены в справочнике /2/, с.5-65, оборудование для деталей аппаратов приведено в /3/.

Выбранное оборудование приводится в записке с краткой технологической характеристикой. Сведения о приспособлениях даны в литературе /2/, с.6З-80 и /3/, Сведения о режущем и другом обраба­тывающем инструменте, а также измерительных средствах содержатся в /2/, с.111-259; 472-477 и /3/.

Режимы обработки и нормы времени рассчитываются и приводятся в записке для двух разнохарактерных переходов.

Режимы резания и основное время для механической обработки определяются в следующей последовательности:

  • установить глубину резания;
  • выбрать подачу инструмента;
  • рассчитать скорость резания;
  • проверить режимы резания по мощности станка;
  • определить основное время на технологический переход.

При определении режимов обработки механического производства используют нормативные таблицы /2/, с.261-304, в заготовительном производстве режимы определяется по формулам для соответствующих типовых технологических процессов /3/.

Режимы обработки, полученные по расчетным формулам или назначенные по справочникам, корректируют по соответствующему оборудованию.

Основное (машинное) время (Т О) для отдельных видов работ приводится в справочной литературе. Для токарных, сверлильных работ Т О как каждый переход рассчитывается по формуле:

Где

Расчетная длина обрабатываемой поверхности, мм;
- число оборотов шпинделя в минуту;
- подача на один оборот шпинделя, мм/об;
- число проходов.

При сверлении припуск равен глубине резания. Так, например, при сверлении в сплошном материале на проход, глубина резания равна половине диаметра сверла.

Основное время на однослойную сварку 1 метра шва рассчитывается по формуле:

- сила тока, А;
- удельный вес наплавленного металла, г/мм 3 ;
- коэффициент наплавки, г/(А.ч);
- площадь поперечного сечения наплавленного металла, мм 2 ;

Для различных видов швов F определяется путем разделения его на простые геометрические фигуры и подсчета их площадей. При автоматической электросварке под слоем флюса по принятой ско­рости сварки (V с ) определяется скорость подачи электродной проволоки (V э )| обеспечивающая получение шва требуемого сечения F по формуле:


где F э - площадь поперечного сечения электродной проволоки, мм 2 .

При определении расчетной длины шва необходимо к длине по чертежу добавлять длину технологических заходных и выходных планок, равную 120 - 150 мм.

5. Оформление графической части

В действующем производстве оформление технологической документации предусматривает возможность снятия копий со всех видов документов и автоматизацию учета всех сведений, заносимых в каждую графy или строку документа. Поэтому стандартные формы бланков технологической документации по ЕСТПП предусматривают жесткий порядок расположения информации на поле каждой карты или ведомости и десятиразрядную структуру кодирования каждого заносимого в документ параметра или наименования.

Данная курсовая работа предназначена не для технологов, а для конструкторов, поэтому в учебных целях форма маршрутно-операционной карты значительно упрощена, а вся информация заносится в неё в естественном (раскодированном) виде. Это способствует максимальному сосредоточению внимания студентов на главном: на сущности разрабатываемого технологического процесса и на его взаимосвязи с конструкцией детали, её технологичностью, показателями качества. Упрощенная форма бланка маршрутно-операционной карты показана в приложении 1. В графе "Эскиз детали" выполняется рабочий чертеж детали с ТУ на изготовление. Общее число разделов, сечений, видов и размеров должно быть минимальным, но достаточным для изготовления и контроля детали. При нанесении контура детали, а также при выполнении операционных эскизов, масштаб изображения можно не соблюдать и не указывать. Необходимо лишь отчетливое изображение всех элементов детали, подлежащих обработке.

Для упрощения последующих записей операций и переходов рекомендуется на эскизе детали все обрабатываемые поверхности обозначить выносными линиями, на концах которых в окружностях диаметром 6-8 мм проставить их порядковые номера. Начало нумерации выбирается произвольно, последовательность нумерации должна производиться по часовой стрелке.

В правом угловом штампе карты студент проставляет номер своей группы, фамилию, наименование и материал детали, фамилию консультанта. В графе “Наименование и содержание операции” в последовательности сверху вниз заносятся названия всех операций полного маршрута изготовления заданной детали, а для основных операций подробно записываются все установы и переходы. При этом нумерацию операций ведут в виде трехразрядного числа через 5 или 10 единиц, нумерацию установов - прописными буквами русского алфавита, а переходов внутри каждого установа арабскими цифрами. При этом слово “Операция” не пишется.

Согласно технологическим стандартам ГОСТ 3.1702-79 и ГОСТ 3.1703-79 название операции формулируется в соответствии с используемым для её выполнения технологическим оборудованием. Наиболее употребимые операции для типовых технологических процессов перечислены в табл. 1.

Перечень типовых операций

Оборудование

Операция

Станки агрегатные

Станки протяжные

Станки долбёжные

Станки вертикально-фрезерные

Станки горизонтально-фрезерные

Станки вертикально-сверлильные

Станки горизонтально-расточные

Станки токарно-винторезные

Станки токарно-револьверные

Станки токарные с программным управлением

Станки токарно-карусельные

Зуборезные полуавтоматы

Полуавтоматы зубострогальные

Полуавтоматы зубошевинговальные

Станки плоскошлифовальные

Станки бесцентрово-шлифовальные

Станки круглошлифовальные

Полуавтоматы хонинговальные

Стол контролера

Листогибочное

Листоправильное

Разметочное

Оборудование для разделительной резки

Развальцовочное

Оборудование для очистки

Агрегатная

Протяжная

Долбёжная

Вертикально-фрезерная

Горизонтально-фрезерная

Вертикально-фрезерная

Горизонтально-расточная

Токарно-винторезная

Токарно-револьверная

Токарно-программная

Токарно-карусельная

Зубофрезерная

Зубострогальная

Зубошевинговальная

Плоскошлифовальная

Бесцентрово-шлифовальная

Круглошлифовальная

Хонинговальная

Контрольная

Разметка

Разрезка

Развальцовка

При записи операции допускается применять обобщенное или конкретное наименование. Обобщенное наименование операций следует применять для операций, состоящих из нескольких переходов. Например, "Слесарная" - включающая выполнение таких переходов, как "Разметка", "Керновка", "Опиловка".

Основные операции записываются с полным указанием установов,


основных и вспомогательных переходов. Нумерация установов в каждой операции своя, переходы в каждом установе нумеруются, начиная с цифры 1. Например, "0С5. Заготовительная. Отрезать заготовку длиной 245 мм. 0I0. "Токарно-винторезная. Обработать деталь по чертежу, оставив припуски под шлифование. Установ А. Обточить правую сторону детали. 1-й переход. Закрепить заготовку в трехкулачковом патроне. 2 переход. Подрезать торец 5 и т.д. Последней должна быть контрольная операция с общим указанием:

"Проверить деталь по чертежу и техническим требованиям".

Примеры записи содержания переходов следует выполнять в соответствии с рекомендациями (табл.2).

Запись перехода

Сокращенная

Гнуть деталь, выдерживая размеры 1 и 2 Гнуть деталь согласно эскизу
Нарезать резьбу, выдерживая размер 1 Нарезать резьбу согласно чертежу
Развернуть отверстие 2, выдерживая шероховатость Развернуть отверстие 2 согласно чертежу

Развальцевать поверхность 1, выдерживая размер 2

Развальцевать поверхность 1 согласно чертежу
Установить деталь, выдерживая угол=15 градусам Установить деталь согласно чертежу
Сверлить отверстие, выдерживая размеры 1 и 2

Сверлить отверстие согласно чертежу

Опилить заготовку, выдерживая размеры 1, 2 и 3

Опилить заготовку согласно эскизу

В графе "Технологический эскиз" заносят 5-7 операционных эскизов в порядке выполнения операций. Следует помнить, что операционный эскиз соответствует, строго говоря, не операции, а одному из её установов, т. е. на операционном эскизе изделие изображают в том виде, который оно приобретает после выполнения всех переходов данного останова. Таким образом, каждая операция может иллюстрироваться несколькими операционными эскизами (по числу установов).

На каждом операционном эскизе должно быть изображено:

  • изделие (заготовка) с рабочими размерами и допусками, обрабатываемыми на данном установе;
  • закрепление изделия на данном установе (схематично или условными символами);
  • его основные и (или) вспомогательные движения (если они необходимы для обработки);
  • шероховатость обработанных поверхностей. Обработанный контур выделяется утолщенной в 2-3 раза линией;
  • все инструменты, необходимые для обработки изделия по данному установу, их закрепление (схематично или условно) и движения. Инструменты можно изображать упрощенно, не вырисовывая сложных контуров фасонных лезвий сверла или фрезы; инструменты следует располагать недалеко от обработанных поверхностей, но не вплотную к ним, чтобы инструмент не сливался с изделием.

Движения заготовки и инструмента указываются прямолинейной или дугообразной стрелкой и условным символом. На 2-3х эскизах должно быть показано схематичное (конструктивное) закрепление заготовки, а на остальных – условное. Примеры схематического и условного изображения наиболее употребительных приспособлений показаны в приложении 2.

Пользуясь свободой в выборе масштаба операционных эскизов, следует рационально использовать всю площадь отведенной для них графы маршрутно-операционной карты и наглядно изобразить отдельные обрабатываемые участки, избегая однообразного повторения контура всей детали на разных операциях. Расположение детали на каждом эскизе должно соответствовать её расположению на станке при выполнении соответствующей операции.

В графе "Оборудование" указывается тип и модель станка, пресса и другой единицы оборудования для каждой операции, приводятся его основные характеристики: мощность главного привода, диапазон рабочих чисел оборотов шпинделя и подач; максимальные размеры обрабатываемых изделий, максимальное усиление, развиваемого гидропрессом и так далее.

В графе "Приспособления" указываются приспособления универсального оборудования (станков): патроны, делительные головки, машинные тиски, магнитные столы, штампы, струбцины. Приспособления даются с указанием типов, ГОСТов, основных технических характеристик (габариты занимаемых изделий, рабочее усилие и так далее).

В графе "Инструменты" указываются типы стандартных режущих инструментов, материал режущей части, габаритные размеры (для сверл и фрез – диаметры), инструменты и приборы, применяемые для контроля.

В графах "Режим работ" указываются основные параметры режима резания, сварки, обработки для каждого перехода. Например, глубина резания t , мм; подача S , мм/об или мм/мин; скорость резания V , м/мин или м/с для лезвийной обработки. Для автоматической сварки под слоем флюса основными параметрами являются сила сварочного тока I , А, напряжение сварочной дуги U д , В, скорость сварки V с , м/ч, скорость подачи электродной проволоки V э , м/ч.

В графе "T o " даётся значение в минутах основного (машинного) расчетного времени для одного, двух переходов нескольких операций.

Заполнение маршрутно-операционной карты надо начинать с выполнения тонкими линиями операционных эскизов. После уточнения и одобрения их преподавателем эскизы оформляются окончательно, равномерно заполняя все поле отведенной для них графы.

Соответствующие эскизам установы и переходы должны располагаться слева от них. Если переходов очень много, то на карту допускается вносить лишь основные из них, остальные указать в пояснительной записке. Размещение переходов из соседнего установа рядом с операционным эскизом не допускается.

При оформлении пояснительной записки после каждого обращения к справочному материалу делать ссылку с указанием порядкового номера использованного источника, номеров таблиц, страниц или рисунков.

Записка заканчивается общим выводом, в котором оценивается эффективность разработанного варианта технологии, указывается её положительные и отрицательные стороны. В конце пояснительной записки приводится список использованной литературы с полным библиографическим описанием каждого источника.

Пример оформления пояснительной записки дан в приложении 3, а маршрутно-операционной карты – в приложении 4.

Текущий контроль за выполнением курсовой работы осуществляется преподавателем. При каждом посещении студента он делает отметку в ка­федральном журнале о ходе работы и оценивает в процентах готовность маршрутно-операционной карты и пояснительной записки. По мере готовности работы каждый студент проходит индивидуальное собеседование у своего консультанта по проделанной работе. Защищенная работа сдаётся преподавателю с простановкой оценки в ведомость и зачетную книжку. Плановые сроки защиты курсовой работы – 11-12-я неделя семестра.

Литература

  1. Справочник технолога-машиностроителя. Под ред. А.Г. Косиловой и Р.К Мещерякова. М.:Машиностроение, 1985, т.1, 665 с.
  2. Справочник технолога-машиностроителя. Под ред.А.Г.Косиловой и Р.К.Мещерякова. М.:Машиностроение, 1985, т.2, 496 с.
  3. Никифоров А.Д., Беленький В.А., Поплавский Ю.В. Типовые технологические процессы изготовления аппаратов химических производств.М.: Машиностроение, 1979

Приложение 1

Маршрутно-операционная карта

Эскиз детали Технические условия

МГУИЭ, кафедра ТМиМ

Маршрутно-операционная карта

Материал

Группа, студент

Подпись, дата

Консультант

Подпись, дата

Наименование и содержание операции

Технологический эскиз

Оборудо-вание

Приспосо-бления

Инстру-мент

Режим обработ-ки
Операция Установка Перехода

* ширина колонки, мм

Приложение 2

Схематичное и условное изображение технологических эскизов

Способ установки

Технологический эскиз

Условное обозначение

В трёхкулачковом самоцентри-рующем патроне с базированием по наружному диаметру подвижным люнетом, с поджатием вращающимся центром

В кондукторе с неподвижной и подвижной призмами, с эксцентровым зажимом

Дорнование отверстий в трубной решетке. В подставке-опоре на столе пресса

Двухпереходная штамповка днища. На вытяжную матрицу с фиксацией прижимным кольцом

Приложение 3

Пример оформления пояснительной записки

Разработка маршрута технологического процесса.

Технологический процесс изготовления детали включает в себя следующие операции:

Описание операций.

I. Токарная операция .

Установ А

Переходы

  1. Установить заготовку в обратных кулачках.
  2. Закрепить.
  3. Обработать поверхность 9 подрезным резцом 5 (два черновых хода и два чистовых) ГОСТ 18880-73 .

Схема снятия припуска.

Операцию осуществляем на токарно-револьверном станке 1365 ГОСТ 1770 .


Приложение 4

Пример оформления маршрутно-операционной карты

Наименование и содержание операции

Технологический эскиз

Опе-рации Уста-нова Пере-хода

Токарная
Обработать деталь по чертежу

А 1 Установить заготовку в обратных кулачках, закрепить
2 Обработать поверхность 1
3 Обработать поверхность 10
4 Обработать поверхность 7
5 Обработать поверхность 11
6 Обработать поверхность 3
7 Обработать поверхность 2
8 Расточить канавку 6
9 Снять фаски 5 и 8
Б 1 Установить заготовку в оправку, закрепить
2 Обработать поверхность 4
3 Обработать поверхность 12

Продолжение

Оборудование

Приспо-собление

Инструмент

Режим обработки

Станок токарно-револьверный 1365 ГОСТ 17-70

Оправка коническая ГОСТ 16211-70

Резцы:
Расточный резец ГОСТ 18063-72

Обработка поверхности подрезным резцом
Наибольший диаметр обрабатываемого прутка – 65 мм. Фасонный резец

Черновое точение:
t = 2 мм
S = 0.9 мм/об
V = 17 м/мин
(n =50 об/мин)

1,6
Наибольшая длина подачи прутка – 200 мм Канавочный резец

Чистовое точение:
t = 0,5 мм
S = 0,26 мм/об
V = 47,5 м/мин
(n =140 об/мин)

2
Наибольший диаметр изделия, устанавли-ваемого над стани-ной – 500 мм. Расточный резец
ГОСТ 18882-73

Обработка по-верхности рас-точным резцом
Черновое точение:
t = 2 мм
S = 0.7 мм/об
V = 170 м/мин
(n =1000 об/мин)

0,06

Частота вращения шпинделя 34 – 1500 об/мин.

Подрезной резец

ГОСТ 18880-73

Чистовое точение:
t = 0,5 мм
S = 0,32 мм/об
V = 225 м/мин
(n =1500 об/мин)

0,04

Продольная подача суппорта 0,09 – 2,7 мм/об.

Фасонный резец
Круговая подача револьверной головки 0,045-1,35 мм/об.

Габаритные размеры: длина – 5360 мм
ширина – 1500 мм высота – 1530 мм


Приложение 5

Технические характеристики основных типов металлорежущих станков

а. Токарных:

Основные паспортные данные станка модели 16K20*

б. Фрезерных:

Основные паспортные данные станка модели 6Н13*


в. Сверлильных

Основные паспортные данные станка модели 2А135*


Введение
1. Цель и задачи курсовой работы
2. Тематика и объект курсовой работы
3. Общее содержание и объем работы
4. Разработка и оформление пояснительной записки
4.1. Анализ технологичности детали
4.2. Выбор вида заготовки и способа её получения
4.3. Выбор технологических баз
4.4. Разработка маршрутного технологического процесса
4.5. Разработка операционной технологии
4.5.1.Определение припусков и операционных размеров
4.5.2. Выбор технологического оборудования и техно­логической оснастки
4.5.3. Расчет режимов обработки и основного (машинного) времени
5. Оформление графической части
6. Контроль выполнения и защита курсовой работы
Приложение 1. Маршрутно-операционная карта
Приложение 2. Схематичное и условное изображение технологических эскизов
Приложение 3. Пример оформления пояснительной записки
Приложение 4. Пример оформление маршрутно-операционной карты
Приложение 5. Технические характеристики основных типов металлорежущих станков

Изготовления детали является основным документом, регламентирующим порядок производства изделия. В нем прописывается последовательность обработки (в виде операций и переходов), применяемые материалы, инструменты, оборудование и режимы, которые позволяют достичь желаемого результата. Здесь же содержится и информация об основном и вспомогательном времени, затрачиваемом на производство одной единицы продукции.

Технологический процесс изготовления детали имеет подготовительный этап, во время которого выполняется подробный анализ условий эксплуатации готового изделия. Это позволяет изучить обоснованность заявляемых технических требований к качеству поверхности и точности размеров. Во время выполнения анализа на технологичность контролируется возможность изготовления детали с заданными допусками на размеры и отклонениями от формы.

На следующем этапе выбираются технологические базы. Они в будущем определят последовательность обработки поверхностей. Если удастся соблюсти принцип постоянства баз, то качество готового изделия будет намного выше. После этого можно приступать к разработке маршрута.

Может быть:

    единичным. Подразумевает изготовление одного наименования изделия, независимо от необходимого объема производства;

    типовым. Позволяет выпустить группу изделий, имеющих общие конструктивные и технологические признаки;

    групповым. Применяется, если необходим выпуск изделий, имеющих разные конструктивные и общие технологические признаки.

    Технологический процесс изготовления необходимо разрабатывать с учетом следующих требований:

    1. В его основе должны лежать последние достижения науки и техники.

      Он должен оказывать прогрессивное воздействие на весь производственный цикл, повышая производительность труда и качество выпускаемых изделий, сокращая трудовые и на его реализацию.

      Технологический процесс изготовления детали должен основываться на существующих типовых и групповых технологических процессах. Если же таковые отсутствуют, то во внимание стоит принимать уже известные прогрессивные решения, которые нашли применение в единичных технологических процессах, разработанных для производства аналогичных изделий.

      При его разработке должны быть учтены все самые жесткие требования, касающиеся техники безопасности, охраны труда и промышленной санитарии.

    Технологический процесс изготовления детали, как правило, включает:

    Заготовительную операцию, во время которой выбирается и подготавливается заготовка для будущего изделия;

    Черновую обработку, для которой предусмотрены большие припуски на размеры;

    Получистовую обработку;

    Чистовую обработку, во время которой достигается требуемый размер, заданная точность и чистота поверхности;

    Контрольную операцию, выполняемую для определения соответствия готового изделия чертежу.

    В зависимости от геометрических размеров изделия и предъявляемых к нему требований отдельные этапы из вышеназванной последовательности могут быть исключены. Однако во всех случаях сначала производится обработка поверхностей, которые приняты за технологические базы. После этого становится возможной отделка оставшихся поверхностей.

    В ряде случаев получистовая обработка может отсутствовать вообще, а черновая и чистовая совмещены. Если для достижения необходимых эксплуатационных свойств деталь подвергается термообработке, то техпроцесс делится на две части: до и после термической части отделки.

    Контрольная операция может быть предусмотрена после каждого вида обработки.

Техпроцессы разрабатываются в случае:

а) при подготовке к выпуску новых машин;

б) при модернизации конструкций освоенных машин;

в) при изменении объёма производства;

г) при внедрении нового технологического оборудования.

Исходные данные для разработки технологических процессов:

а) рабочие чертежи деталей;

б) годовая программа выпуска деталей;

в) сведения об оборудовании;

г) принятые типовые или групповые технологические процессы;

д) справочные материалы (каталоги, альбомы, стандарты и др.).

Разработку предваряет технологический контроль чертежей для проверки запроектированных деталей на технологичность их конструкции.

Технологичность конструкции детали (по ГОСТ 14.201 – 83) – это совокупность свойств, обеспечивающих заданные эксплуатационные характеристики деталей при минимальных производственных издержках (трудозатраты, материалы, энергоресурсы, сырьевые ресурсы).

Разработка технологических процессов должна производиться на основе использования ресурсосберегающих технологий.

В общем случае разработка технологического процесса изготовления детали включает следующие этапы:

1) Анализ исходных данных и выбор действующего типового (группового) технологического процесса или поиск его аналога;

2) Выбор способа получения заготовки и метода её изготовления;

3) Выбор методов и последовательности обработки отдельных поверхностей детали, а также её базирования;

4) Составление технологического маршрута обработки детали;

5) Разработка технологических операций;

6) Нормирование технологических процессов (установление норм расхода материала, норм времени на обработку, квалификации исполните-

7) Расчёт экономической эффективности технологического процесса;

8) Оформление технологической документации и разработка заданий на

проектирование оснастки, нормоконтроль и т.д.

Детализация разработки технологической документации зависит от стадии подготовки и типа производства. На стадиях предварительного проекта и изготовления опытной партии технологическую документацию выполняют в маршрутном описании (в сокращенном описании всех технологических операций в последовательности их выполнения без указания переходов и технологических режимов) или маршрутно-операционном описании (с указанием переходов и режимов).

На стадии подготовки серийного или массового производства технологическая документация оформляется в операционном описании с составлением полного комплекта документов по ЕСТД (ГОСТ 3.1102 – 81; ГОСТ 3.1105 – 84).

Для единичного и мелкосерийного производства ограничиваются маршрутным или маршрутно-операционным описанием.



6.2.1 Выбор методов и последовательности обработки детали

При разработке технологического процесса, прежде всего, определяют способы окончательной обработки поверхности, и выбирают оборудование, которое может обеспечить необходимое качество.

Затем планируют всю последовательность обработки поверхности детали и выбирают необходимое оборудование. При этом учитывают, что каждый последующий этап должен быть точнее предыдущего. Кроме того, учитывают необходимость выбора технологического припуска на каждом этапе обработки.

Итак, намечается общий план обработки детали, содержание отдельных операций и выбор типа оборудования, что составляет основу технологического маршрута обработки детали.

Исходным при разработке технологического маршрута является типовой технологический процесс изготовления деталей данного типа (валов, ЗК и др.). Но затем маршрут уточняется с учётом особенностей данной детали и данного производства.

Первыми обрабатываются поверхности, принятые за технологические базы. Затем обрабатываются остальные поверхности: чем точнее поверхность, тем позже она обрабатывается. Заканчивается обработка детали той поверхностью, которая является наиболее точной и имеет наиболее важное значение для работоспособности детали.

В маршрут включают операции по термической обработке. Закалка, цементация и последующая закалка – до окончательной обработки (шлифования). Цианирование, азотирование – после шлифования.

Перед механической обработкой (в целях улучшения обрабатываемости и снятия остаточных напряжений) или после её обдирки – отжиг, нормализация, улучшение (закалка).



6.2.2 Расчёт припусков на обработку

Припуском на обработку называют слой металла, снимаемый с заготовки в процессе механической обработки для получения детали с заданными точностью размеров и качеством поверхности.

Различают припуски промежуточные и общие.

Промежуточный припуск – толщина слоя металла, снимаемого при выполнении одного перехода или операции.

Общий припуск – толщина слоя металла, которая снимается в результате выполнения всех технологических операций и переходов при механической обработке.

Припуск должен быть оптимальным. Его увеличение даёт повышенные отходы, энергоёмкость и материалоёмкость. Пониженный припуск – это увеличение вероятности брака (т.к. не получить необходимой точности и шероховатости без удаления дефектного поверхностного слоя).

В машиностроении применяют в основном расчётно-аналитический метод определения припусков (В. М. Кована). Он основан на раздельном учёте факторов, влияющих на их величину (имеется и опытно-статистический метод).

Итак, после определения припусков по всем операциям и переходам в отдельности устанавливают операционные размеры деталей. Расчёт операционных размеров начинают с установления (и вычерчивания) размеров готовой детали. Затем на все обрабатываемые поверхности наслаиваются (в последовательности, обратной последовательности механической обработки) операционные припуски с округлением результатов в большую (для наружных поверхностей) и в меньшую (для внутренних поверхностей) сторону.

На операционные размеры устанавливают допуски (по таблице): при соблюдении размера детали в границах допуска припуск на последующую операцию не меньше минимально допустимого.

6.2.3 Выбор оборудования, приспособлений и инструмента

Станочное оборудование выбирают с учётом:

– конструкции и размеров детали;

– необходимой точности и чистоты обработки;

– требуемой производительности;

– минимальной себестоимости работ (т.е. на основе технико-экономи-

ческого анализа).

Одновременно создают необходимые специальные приспособления. Режущий инструмент выбирают с учётом:

– требуемой точности и чистоты обработки;

– способа крепления на выбранном станке или приспособлении;

– простоты в изготовлении и заточке;

– использование стандартных режущих инструментов;

– необходимой износостойкости материала инструмента с учётом

свойств материала детали.

Режущие пластинки изготавливают из быстрорежущих сталей (Р18; Р9; Р9Ф5; Р18Ф2), твёрдых сплавов (Т5К10; Т15К6; Т30К4; ВК8; ВК6; ВК2), металлокерамических материалов (ЦВ18), алмазов натуральных и синтетических.

Измерительный инструмент выбирают с учётом требований точности, удобства и быстроты измерений.

6.2.4 Определение режимных параметров и времени выполнения

операций

Режимы обработки характеризуются глубиной резания, подачей и скоростью резания.

Исходят из наименьшей себестоимости обработки детали с заданной чистотой и точностью (с учётом износостойкости режущего инструмента, т.е. продолжительности работы между двумя переточками – t = 60 мин). При расчётах сначала выбирают глубину резания, затем подачу и наконец скорость резания.

Глубину резания при грубой обработке берут равной величине припуска.

Получистовою и чистовую обработку выполняют за несколько проходов (с малой глубиной на последних проходах для обеспечения заданной точности и шероховатости).

В зависимости от глубины резания назначается максимально возможная величина подачи. При черновой обработке величина подачи ограничивается жесткостью и прочностью механизмов станка, приспособления, его мощностью и т.д. При чистовой – только требуемой шероховатостью поверхности. В свою очередь скорость резания определяют расчётом или выбирают (по нормативной таблице) в зависимости от вида материала, глубины и подачи, материала режущего инструмента.

Затем определяют усилие, крутящий момент и мощность резания. Эти результаты сравнивают с паспортными характеристиками станка и корректируют (если необходимо).

Нормы времени определяют на основе технико-экономических расчётов. Важный элемент нормирования – отнесение работ к тем или иным разрядам (т.е. установление квалификации работ и соответственно рабочих).

6.2.5 Понятия о типизации технологических процессов

Сущность типизации в том, что функционально различные, но сходные по конструктивным и технологическим признакам детали объединяют в группы, и изготавливают по единой технологии. Это резко увеличивает серийность и позволяет создавать поточные линии даже тогда, когда количество деталей каждого вида, входящих в данную группу, невелико.

Таким образом, при групповой обработке (по С. П. Митрофанову) объектом разработки технологического процесса является не отдельная деталь, а их группа.

Объединяют детали – по возможности их полного изготовления или выполнения отдельных операций по общей единой технологии на одном оборудовании с использованием единой оснастки (и с минимальной подналадкой).

В этом случае разработка технологического процесса, а также выбор оборудования и оснастки производят применительно к детали – представителю, в качестве которой принимается комплексная деталь, содержащая все обрабатываемые элементы данной группы.

Отметим, что комплексная деталь может быть условной (фиктивной), т.е. все детали, входящие в эту группу, будут проще комплексной детали. Их обработку производят с пропуском некоторых позиций.

С учётом типизации технологического процесса все детали объединены в группы по типовым признакам.

6.2.6 Основные сведения о технологии изготовления типовых деталей машин

Технология изготовления валов

В машинах применяются гладкие, ступенчатые, полые, кулачковые и коленчатые валы. Детали класса валов имеют соотношение между длиной l и диаметром d :

(l ≤ 1000 мм; d ≤ 120 мм).

Валы изготавливают из конструкционных углеродистых сталей 40 и 45, а также из легированных сталей 40Х, 45Г2, 18ГТ и др. В качестве заготовок используют прокат сплошного сечения, трубы, поковки, штамповки (иногда отливки).

В большинстве случаев маршрут обработки валов включает:

1. обработку торцов заготовки;

2. зацентровку заготовки;

3. черновое обтачивание;

4. предварительное шлифование шеек;

5. фрезерование шлицев и шпоночных пазов;

6. сверление отверстий;

7. нарезание резьб;

8. термическую обработку;

9. окончательное шлифование шеек;

10. обработку внутренних поверхностей (у полых валов).

В условиях серийного (в том числе мелкосерийного) производства применяют станки с ЧПУ, позволяющим быстро производить переналадку станков. Конструкции современных машин предъявляют высокие требования к качеству обработки валов.

Технология изготовления втулок и гильз

В машинах применяют бронзовые, латунные, стальные, чугунные и биметаллические втулки, а также чугунные и стальные гильзы. Их изготавливают из прокатных прутков, литых стержней, цельнотянутых труб, полых отливок и биметаллических лент.

В основном они концентричны, т.е. имеют общую ось наружной поверхностью и внутренней поверхностью и жёсткое ограничение допускаемой разностенности (разнотолщинности). Их наружные поверхности – обычно цилиндрические гладкие или ступенчатые или конические. Очень важно обеспечить концентричность наружных и внутренних поверхностей и перпендикулярность торцов оси детали.

Эта задача решается тремя способами:

1. обработка наружной поверхности, отверстия и торцов за один установ;

2. первоначальная обработка внутренней поверхности и её использование в качестве базы при обработке наружной поверхности и торцов, которая производится с установкой детали на оправке;

3. первоначальная обработка наружной поверхности и базирование по ней при обработке внутренней поверхности и торцов детали с её установкой в патроне или приспособлении.

Технология изготовления зубчатых колёс (ЗК)

В машинах широко используют цилиндрические, конические, червячные зубчатые передачи (ЗП). Точность ЗК установлена ГОСТами и составляет 7 – 10 степени. ЗК изготавливают, из конструкционной стали 40, 45, 40Х, 30ХГТ и др. и редко из чугуна и бронзы.

Стальные ЗК больших диаметров, а также чугунные и бронзовые колёса делают из литых заготовок. Стальные ЗК меньших размеров делают из поковок и штамповок, которые подвергают нормализации или улучшению.

Изготовление ЗК включает:

1. обработку заготовки под нарезание зубьев;

2. нарезание, закругление и шевингование зубьев;

3. термическую и отделочную обработку.

Обработка ЗК до нарезания зубьев производится с учётом соблюдения концентричности поверхностей и перпендикулярности торцов к оси заготовки в пределах заданных допусков. Выполнение этих требований достигается применением тех же методов, что и при обработке втулок.

Технология изготовления корпусных деталей

К корпусным деталям относятся базовые детали, внутри которых размещают механизмы машины (например, картеры редукторов, раздаточных коробок, коробок передач и др.). Для них характерно наличие привалочных поверхностей, которыми они сопрягаются с другими узлами машины, а также систем отверстий (под подшипники валов, установочные штифты и крепёжные детали), точно координированных между собой и относительно привалочных поверхностей. Эта координация необходима для обеспечения нормального монтажа взаимосвязанных узлов машины. Поэтому обращают особое внимание при обработке корпусных деталей:

– обеспечению в пределах установленных допусков межосевых расстояний; параллельности и перпендикулярности осей основных отверстий друг к другу и привалочным плоскостям; размеров и геометрической формы всех отверстий и перпендикулярности их торцов осям; соосности отверстий для подшипников каждого вала.

Корпусные детали изготавливают из чугунных или стальных отливок, иногда из аллюминевых отливок и сварных конструкций. Их обработка начинается с основных базовых поверхностей, затем поверхностей параллельных и перпендикулярных базовым поверхностям, включая основные отверстия, и в конце крепёжные отверстия.

При выполнении первой операции установка детали производится на черновые базы. Их выбор должен обеспечить взаимно необходимое положение обрабатываемых поверхностей и необработанных поверхностей, а также равномерное распределение припусков.

Задание………………………………………………………………………………………………………………..2

Чертеж детали………………………………………………………………………………………………………..3

Введение………………………………………………………………………………………………………………5

1.Проектирование технологического процесса с использованием типового……………….……..……..6

1.1 Анализ исходных данных…………………………………………………………………………...…….6

1.2 Определение конструкторско-технологического кода детали……………………………………..7

2. Оценка показателя технологичности конструкции детали………………………………………………8

3. Выбор метода изготовления детали………………………………………………………………………...9

4. Выбор заготовок и технологических баз…………………………………………………………………..10

5. Назначение режимов обработки…………………………………………………………………………....12

6. Выбор технологической оснастки…………………………………………………………………………..13

7. Техническое нормирование………………………………………………………………………………….14

7.1 Раскрой на гильотинных ножницах……………………………………………………………………14

7.2 Холодная штамповка…………………………………………………………………………………….15

8. Определение типа производства…………………………………………………………………………...17

9. Технико-экономические показатели разработанного технологического процесса………………...18

10. Расчет размера партии деталей, заготовок………………………………………………………………21

12. Мероприятия по безопасности труда………………………………………………………………………23

13. Заключение……………………………………………………………………………………………………..24

14. Библиографический список………………………………………………………………………………….25

Приложение 1………………………………………………………………………………………………..…26

Приложение 2………………………………………………………………………………………………..…27

Приложение 3………………………………………………………………………………………………..…28

Приложение 4………………………………………………………………………………………………..…29

В настоящее время в нашей стране сложилась такая ситуация, что развитие промышленности является самой приоритетной из всех поставленных задач. Для того, чтобы Россия заняла прочное место среди ведущих мировых держав, в ней должна существовать развитая сфера промышленного производства, которая должна основываться не только на восстановлении основанных в советский период заводов, но и на новых, более современно оборудованных, предприятиях.

Одним из важнейших шагов на пути к экономическому процветанию является подготовка специалистов, которые имели бы не строго ограниченные рамками своей профессии знания, а могли комплексно оценить выполняемую ими работу и ее результат. Такими специалистами являются инженеры-экономисты, разбирающиеся не только во всех тонкостях экономических аспектов функционирования предприятия, но и в сущности производственного процесса, который и обуславливает это функционирование.

Целью данного курсового проекта является ознакомление непосредственно с процессом производства, а также оценка и сравнение его эффективности не только с экономической, но и с технологической точек зрения.

Производство изделия, его сущность и методы оказывают наиболее весомое влияние на технологические, эксплуатационные, эргономические, эстетические и, конечно, функциональные характеристики этой продукции, а, следовательно, на его себестоимость, от которой в прямой зависимости находятся цена изделия, спрос на него со стороны пользователей, объемы продаж, прибыль от реализации, а, следовательно, все экономические показатели, которые и определяют финансовую устойчивость предприятия, его рентабельность, долю рынка и т.д. Таким образом, то, как изготовляется продукция, оказывает влияние на весь жизненный цикл товара.

Сегодня, когда конкурентный рынок вынуждает производителей переходить к наиболее качественным и дешевым продуктам, особенно важно оценить все аспекты производства, распространения и потребления изделия еще на стадии его разработки, чтобы избежать неэффективного использования ресурсов предприятия. Это помогает также в совершенствовании технологических процессов, которые разрабатываются часто не только исходя из потребностей рынка в изготовлении новый продукции, но и принимая во внимание стремление производителей к более дешевому и быстрому способу получения уже существующей продукции, что сокращает производственный цикл, уменьшает величину связанных в производстве оборотных средств, а, следовательно, стимулирует рост инвестиций в новые проекты.

Итак, проектирование технологического процесса является важнейшим этапом производства продукции, который влияет на весь жизненный цикл товара и способен стать определяющим при принятии решения о производстве того или иного продукта.

Технологический процесс - главная часть производственного процесса, включающая действия по изменению размеров, формы, свойств и качества поверхностей детали, их взаимного расположению с целью получения нужного изделия.

Типовой технологический процесс является унифицированным для наиболее типичных деталей, обладающих сходными технико-конструктивными параметрами. Инженерами высокого класса разрабатывается технологический процесс для типовых деталей, а затем, с их помощью, составляют рабочие технологические процессы для конкретной детали. Использование типового технологического процесса позволяет упростить разработку тех. процессов, повысить качество этих разработок, сэкономить время и сократить затраты на технологическую подготовку производства.

Разработка технологического процесса включает в себя следующие этапы :

Определение технологической классификационной группы детали;

Выбор по коду типового технологического процесса (выбор метода получения детали);

Выбор заготовок и технологических баз;

Уточнение состава и последовательности операций;

Уточнение выбранных средств технологического оснащения.

Для определения технологической классификационной группы детали необходимо изучить исходные данные, в которых содержится информация о детали и располагаемом для ее изготовлению оборудовании.

Исходные данные содержат:

· чертеж детали

· сборочный чертеж штампа

· спецификация

В результате изучения этих данных, получаем:

Деталь - экран - представляет собой плоскую деталь с конструкторским кодом:

РГРА. 755561.002.

Материал: Сталь 10 ГОСТ 914- 56 - качественная низкоуглеродистая сталь с содержанием углерода 0,2 %. Этот сплав хорошо сваривается и обрабатывается резанием, а также давлением в холодном состоянии. Эти свойства доказывают целесообразность использования холодной штамповки для изготовления этой детали.

Сортамент: лист толщиной 1 мм. Из данного материала обычно изготавливают горячекатаные листы.

Шероховатость: для всей поверхности детали высота неровностей профиля по десяти точкам R z =40 мкм, среднеарифметическое отклонение профиля R a =10 мкм. Класс шероховатости 4. Поверхность детали образуется без удаления верхнего слоя.

Степень точности: наибольший квалитет 8

Технологический процесс: в данном случае наиболее целесообразно применять холодную штамповку.

Холодная штамповка - это процесс формообразования поковок или готовых изделий в штампах при комнатной температуре.

Масса детали:

M = S*H*r, где S – площадь детали, мм 2 ; H – толщина, мм; r - плотность, г/мм 3

Штамп последовательный

Штамп - деформирующий инструмент, под воздействием которого материал или заготовка приобретает форму и размеры, соответствующие поверхности или контуру этого инструмента . Основными элементами штампа являются пуансон и матрица.

Конструкция данного штампа включает пуансон для пробивки отверстия диаметром 18 мм, а также пуансон для вырубки наружного контура детали.

Этот штамп является последовательным многооперационным штампом, который предназначен для штамповки деталей из листового материала. Изготовление заготовки проходит в 2 этапа: сначала пробиваются отверстие диаметром 18 мм, затем получение наружного контура детали.

При нахождении технологической классификационной группы детали необходимо к уже имеющемуся конструкторскому коду детали добавить технологический код детали.

Для определения технологического кода детали по имеющимся данным определим ряд признаков, а затем найдем их код по "Конструкторско-технологическому классификатору деталей" :

Таблица 1.

Признак Значение Код
1 Метод изготовления Холодная штамповка 5
2 Вид материала Углеродистая сталь У
3 Объемно-габаритные характеристики Толщина 1 мм 6
4 Вид дополнительной обработки С заданной шероховатостью 1
5 Уточнение вида дополнит. обработки галтовка 1
6 Вид контролируемых параметров Шероховатость, точность М
7 Количество исполнительных размеров 3 1
8 Количество констр. элементов, получаемых дополнит. Обработкой 1 1
9 Количество типоразмеров 4 2
10 Сортамент материала лист горячекатаный 5
11 Марка материала Сталь 10КП лист 1,0-II-H ГОСТ 914-56 Д
12 Масса 6 г 4
13 Точность квалитет-8, Rz=40, Ra=10 П
14 Система простановка размеров

прямоугольная система координат

последовательно от одной базы

3

Таким образом, полный конструкторско-технологический код детали имеет вид:

РГРА. 745561.002 5У611М.1125Д4П3


Технологичность - это свойство конструкции изделия, обеспечивающее возможность его выпуска с наименьшими затратами времени, труда и материальных средств при сохранении заданных потребительных качеств .

Значение показателя технологичности определяется как комплексное через значения частных показателей в соответствии с ОСТ 107.15.2011-91 по формуле:

k i - нормированное значение частного показателя технологичности детали

Конструкция детали является технологичной, если рассчитанное значение показателя технологичности не меньше его нормативного значения. В противном случае конструкция детали должна быть доработана конструктором.

Оценка технологичности детали 5У611М.1125Д4П3

Таблица 2

Наименование и обозначение частного показателя технологичности Наименование классификационного признака Код градации признака Нормированное значение показателя технологичности
Показатель прогрессивности формообразования К ф Технологический метод получения, определяющий конфигурацию (1-й разряд технологического кода) 5 0,99
Показатель многономенклатурности видов обработки К о Вид дополнительной обработки (4-й разряд технологического кода) 1 0,98
Показатель многономенклатурности видов контроля К к Вид контролируемых параметров (6-й разряд технологического кода) М 0,99
Показатель унификации конструктивных элементов К у Количество типоразмеров конструктивных элементов (9-й разряд технологического кода) 2 0,99
Показатель точности обработки К т Точность обработки (13-й разряд технологического кода) П 0,96
Показатель рациональности размерных баз К б Система простановки размеров (14-й разряд технологического кода) 3 0,99

Нормативное значение показателя технологичности равно 0,88. Рассчитанный . Следовательно, конструкция детали технологична.


Технологическому процессу сопутствует ряд вспомогательных процессов: складирование заготовок и готовых изделий, ремонт оборудования, изготовление инструмента и оснастки.

Технологический процесс условно состоит из трех стадий:

1. Получение заготовок.

2. Обработка заготовок и получение готовых деталей.

3. Сборка готовых деталей в изделие, их настройка и регулировка.

В зависимости от требований, предъявляемых к точности размеров, формы, относительного положения и шероховатости поверхностей детали с учетом ее размеров, массы, свойств материала, типа производства, выбираем один или несколько возможных методов обработки и тип соответствующего оборудования .

Деталь представляет собой плоскую фигуру, поэтому она может быть изготовлена из листового материала с помощью штампа.

Маршрут изготовления изделия:

1) подготовительная операция:

1.1) выбор заготовок;

1.2) составление карт раскроя материала;

1.3) расчет режимов обработки;

2) заготовительная операция - на гильотинных ножницах разрезают листы на полосы согласно карте раскроя; эта операция выполняется низко квалифицированным (1…2 разряд) резчиком с помощью гильотинных ножниц.

3) штамповочная операция - придание заготовке формы, размеров и качества поверхности, заданных чертежом; эта операция исполняется более квалифицированным (2…3 разряд) рабочим - штамповщиком, с применением штампа, оснащенного прессом.

4) галтовочная операция - снятие заусенцев; эту операцию выполняет слесарь 2…3 разряда на вибрационной машине

5) контрольная операция - контроль после каждой операции (визуальный), выборочный контроль на соответствие чертежу. Контроль размеров проводится с помощью штангенциркуля - для контура детали, и с помощью пробок - для отверстий.


Заготовки необходимо подбирать таким образом, чтобы обеспечить наиболее рациональное использование материала, минимальную трудоемкость получения заготовок и возможность снижения трудоемкости изготовления самой детали.

Так как деталь изготавливается из плоского материала, то в виде исходных материалов целесообразно использовать листы. Вследствие того, что деталь изготавливается методом холодной штамповки в последовательном штампе, то листы для подачи в штамп нужно разрезать на полосы. Необходимо найти как можно более рациональный способ раскройки материла, который определяется с помощью формулы:

где А - наибольший размер детали, мм

δ - допуск на ширину полосы, нарезанной на гильотинных ножницах, мм

Zн - гарантийный наименьший зазор между направляющими планками и полосой, мм

δ" - допуск на расстояние между направляющими планками и полосой, мм

а - боковая перемычка, мм

С помощью таблиц определяем для данной детали:

Для данной детали подойдут круглые заготовки.

Наибольший размер детали А = 36 мм.

Перемычки а=1,2 мм; в=0,8 мм

Допуск на ширину полосы, нарезанной на гильотинных ножницах δ=0,4 мм

Гарантийный наименьший зазор между направляющими планками и полосой Zн=0,50 мм

Допуск на расстояние между направляющими планками и полосой δ"=0,25

Продольный раскрой:

Получаем коэффициент использования материала:

Где S А - площадь детали, мм 2 ;

S Л - площадь листа, мм 2 ;

n - количество деталей, полученных из листа.

В результате получаем:

Проанализируем поперечный раскрой:

Таким образом, продольный раскрой более экономичен, так как при этом раскрое коэффициент использования материала больше, чем при поперечном.

Приведем схемы раскрой для продольного раскроя материала (рис. 1, 2)




а=1,2 t=D+в=36,8

Рис. 1. Раскрой полосы

2000

Рис. 2. Раскрой листа.

Исходя из конструкции штампа, базирование заготовки осуществляется с помощью упора и направляющих планок штампа, а базирование пуансонов - по геометрическому центру пуансона матрицы (по контору детали).

Наибольшую точность обеспечивает совпадение конструкторской и технологической баз. В данном случае будет трудно обеспечить высокую точность, так как последовательный штамп предполагает движение заготовки от пуансона к пуансону, что, естественно, увеличивает погрешность изготовления детали.

Режимы обработки представляют собой совокупность параметров, определяющих условия, при которых изготавливаются изделия.

Штамп последовательного действия предполагает сначала - пробивка отверстий, а затем - вырубка по контуру. Вырубка и пробивка являются операциями отделения части листа по замкнутому контуру в штампе, после которых готовая деталь и отход проталкиваются в матрицу.

Для детали, получаемой штамповкой, расчет режимов заключается в определении усилий штамповки. Полное усилие штамповки складывается из усилий пробивки, вырубки, снятия и проталкивания детали.

Условие пробивки определяется по формуле:

где L - периметр пробиваемого отверстия, мм;

h - толщина детали, мм;

σ ср - сопротивление срезу, МПа.

Из таблицы находим: σ ср =270 МПа.

Таким образом,

Усилие вырубки детали по контуру определяется по той же формуле:

Определение требуемых усилий проталкивания детали (отхода) сквозь матрицу производится по формуле:

где К пр - коэффициент проталкивания. Для стали K пр =0,04

Аналогично определяется усилие снятия отхода (детали) с пуансона:

;

где K сн - коэффициент проталкивания. Для стали K сн =0,035

Полное усилие штамповки найдем по формуле:

где 1,3 - коэффициент запаса на усиление пресса.

Для данной детали получим полное усилие штамповки:

Технологическая оснастка представляет собой дополнительные устройства, применяемые для повышения производительности труда, улучшения качества.

Для изготовления детали сепаратор, исходя из имеющегося оборудования, целесообразно применять штамп последовательного действия, когда вырубка отверстий и контура детали производится последовательно, что позволяет использовать простую конструкцию штампа, а в качестве оборудования по технологическому процессу требуются гильотинные ножницы и механический пресс.

Гильотинные ножницы представляют собой станок для резки бумажных кип, металлический листов и т.д., в котором один нож неподвижно закреплен в станине, а другой, поставленный наклонно, получает возвратно-поступательное движение.

Главными параметрами, который является наиболее показательным для выбираемого оборудования и который обеспечивает выполнение режимов, предусмотренных технологическим процессом, для пресса является усилия штамповки, прессования, а для гильотинных ножниц - наибольшая толщина разрезаемого листа и его ширина.

Таблица 3

Характеристики ножниц Н475

Рассчитанное усилие штамповки Р п =63,978 кН выбираем [по приложению 5, 3051] пресс таким образом, чтобы его номинальное усилие превышало значение требуемого усилия штамповки.

Таблица 4

Характеристики пресса КД2118А

Нормирование технологического процесса состоит в определении величины штучного времени Т ш для каждой операции (при массовом производстве) и штучно-калькуляционного времени Т шт (при серийном производстве). В последнем случае рассчитывается подготовительно-заключительное время Т пз.

Величины и Т шк определяют по формулам:

; Т шк = Т ш + Т пз /n,

где Т о - основное технологическое время, мин;

Т в - вспомогательное время, мин

Т об - время обслуживания рабочего места, мин;

Т д - время перерывов на отдых и личные надобности, мин;

Т пз – подготовительно-заключительное время, мин;

n – количество деталей в партии.

Основное (технологическое) время затрачивается непосредственно на изменение форм и размеров детали.

Вспомогательное время расходуется на установку и снятие детали, управление станком (прессом) и изменение размеров детали.

Сумма основного и вспомогательного времени называется оперативным временем.

Время обслуживания рабочего места складывается из времени технического обслуживания (смена инструмента, подналадка станка) и времени на организационное обслуживание рабочего места (подготовка рабочего места, смазка станка и т.д.)

Подготовительно-заключительное время нормируется на партию деталей (на смену). Оно расходуется на ознакомление с работой, настройку оборудования, консультации с технологом и т.д.

Рассчитаем нормирование технологического процесса нарезки листа материала на полосы.

Так как в последовательный штамп подаются полосы материала, то требуется разрезать листы стали 10 на полосы, ширина которых равна ширине заготовок. Для этого используем гильотинные ножницы

Операция - резка полос из стального листа 710 х 2 000;

шаг - 38,75 мм;

18 полос из листа;

18 х 54 = 972 шт. -заготовок из листа;

ручной способ подачи и установки листа;

ручной способ удаления отхода;

оборудование - гильотинные ножницы Н475;

40 ходов ножа в минуту;

способ включения ножной педалью;

муфта включения фрикционная;

положение рабочего - стоя.

1. Расчет нормы штучного времени на резку стального листа

1.1. Взять лист из стопы, положить на стол ножниц, установить по заднему упору. Время на эти операции зависит от площади листа и обычно указывается в расчете на 100 листов.

При площадь листа время на 100 листов- 5,7 мин.

Следуя указаниям по расчетам:

1.1.1) при подсчете нормы штучного времени на заготовку, время по нормативам делим на число заготовок, получаемых из листа;

1.1.2) при установке листа по заднему упору, время по нормативам принимаем с коэффициентом, равным 0,9;

1.1.3) поправочный коэффициент при толщине листа стали 1 мм - 1,09.

1.2. Включить ножницы 18 раз. Так как требуется получить 18 полос: 17 включений ножниц для того, чтобы отделить полосы одну от другой и еще одно - чтобы отделить последнюю полосу от остатка листа. Время, затрачиваемое на это, зависит от способа включения гильотинных ножниц.

При нажатии педали сидя - 0,01 мин на полосу.

1.3. Отрезать заготовки 18 раз. Длительность этой операции зависит от возможностей ножниц

При 40 ходов в минуту и фрикционной муфты выключения - 0,026 мин на полосу.

1.4.Продвинуть лист до упора 18 раз (так как лист делится на полосы с остатком, поэтому необходимо отделить последнюю полосу от отхода). Продолжительность данного действия зависит от длины листа и шага.

При длине листа по линии реза 2000 мм и шаге продвижения листа 38,75 < 50 мм время - 1,4 мин на полосу.

1.5.Взять отход со стола ножниц, уложить в стопу.

При площади заготовки время 0,83 мин.

Таблица 5.

Расчет нормы штучного времени на резку стального листа

Переходы Время на 100 листов, мин
Основное время, Т о Вспомогательное время, Т в
перекрываемое время неперекрываемое время, Т в
Взять лист из стопы, проложить на стол ножниц, установить по заднему упору 1.1 - -
Включить ножницы (18 раз) 1.2 - -
Отрезать заготовки (18 раз) 1.3 - -
Продвинуть лист до упора (17 раз) 1.4 -
Взять отход со стола ножниц, уложить в стопу 1.5 - -
Итого 46,8 27,2 50,39

* - см. пункт 1.1.2.

Норма штучного времени рассчитывается по формуле:

Т о – основное время резки;

Т в – вспомогательное время;

n д – число деталей в листе.

на 100 деталей;

мин на 1 деталь.

Операция - вырубка детали по контуру, отверстий в детали из полосы;

штамп с открытым упором;

ручной способ подачи и установки заготовки;

ручной способ удаления отходов;

положение рабочего - сидя;

кривошипный пресс с усилием 63 Н;

150 ходов ползуна в минуту;

фрикционная муфта включения;

способ включения - педалью.

2. Расчет нормы штучного времени на штамповку детали из полосы.

1.1. Взять полосу, смазать с одной стороны. Необходимыми операциями подготовки заготовок к холодной штамповке являются удаление окалины, загрязнений, дефектов, покрытий-смазок. Затрачиваемое на это время зависит от площади заготовки.

При такой площади время на 100 полос равно 5,04 мин.

2.2. Установить полосу в штамп до упора. Эта операция необходима для обеспечения условия базирования, ее продолжительность зависит от вида штампа, длины и ширины полосы, а также толщины материала.

При ширине полосы 38,75 мм исходное время равно 5,04 мин на 100 полос.

При полосе длиной 2 м коэффициент равен 1,08;

для закрытого штампа - 1,1;

для стали толщиной 1 мм - 1,09.

2.3. Включить пресс. Длительность данного действия зависит от положения рабочего и способы управления прессом.

Для включения пресса педалью сидя - 0,01 мин на полосу;

2.4. Штамповать. Время, занимаемое штамповкой зависит от используемого оборудования.

Для пресса с числом ходов ползуна равным 150 и фрикционной муфтой - 0,026 мин на полосу.

2.5. Время, затрачиваемое на продвижение полосы на шаг, зависит от ширины и длины полосы и вида штампа.

Для полосы шириной 38,75 мм основное время равно 0,7 мин на 100 полос;

для закрытого штампа - коэффициент 1,1;

коэффициент для полосы длиной 2 м - 1,08.

2.6. Длительность операции удаления отхода полосы (решетки) определяется, исходя из полосы материала.

При полосе 38,75 х 2 000 - 3,28;

для закрытого штампа - 1,1;

коэффициент для стали толщиной 1 мм - 1,09.

Таблица 6.

Расчет нормы штучного времени на штамповку детали

Переходы Время на 100 полос, мин
Основное время, Т о Вспомогательное время, Т в
перекрываемое время неперекрываемое время, Т в
Взять полосу, смазать с одной стороны 2.1 - - 5,04 (t в1)
Установить полосу в штамп до упора 2.2 - -
Включить пресс 2.3 - -
Штамповать 2.4 - -
Продвинуть полосу на шаг 2.5 - -
Отбросить отход полосы (решетку) 2.6 - -
Итого 2,6 0,91 16,5

Норма штучного времени:

n д - количество деталей, получаемых из полосы;

К пр - коэффициент, учитывающий положение рабочего (сидя - 0,8);

а обс - время на организационно-техническое обслуживание рабочего места, для кривошипного пресса с усилием прессования до 100 кН, равно 5 % от оперативного времени;

а от.л. - время, затрачиваемое рабочими на отдых и личные надобности, при массе заготовки до 3 кг принимается как 5 % от оперативного времени.

мин на одну заготовку.

Согласно ГОСТ 3.1108 - 74 ЕСТД тип производства характеризуется коэффициентом закрепления операций. На стадии проектирования технологических процессов используется следующая методика расчета коэффициента закрепления операций (серийности) за рабочим местом (станком) :

где Т т - такт выпуска, мин;

Т ш. ср. - среднее штучное время для выполнения операции, мин.

Такт выпуска рассчитывается по формуле:

Ф - действительный годовой фонд времени работы станка или рабочего места, ч (примем Ф=2000 ч).

N - годовая программа выпуска изделий, шт.

Среднее штучное время определяется как среднее арифметическое по операциям процесса. Будем считать, что время в основном затрачивается на нарезку и штамповку.

n - число операций (при указанном допущении k=2)

Дано, что годовая программа выпуска экрана равна 1000 тыс. шт.

Такт выпуска мин.

Штучное время мин.

Среднее штучное время мин.

Коэффициент закрепления операций .

В зависимости от величины К зо выбираем тип производства: при 1< К зо <10 крупносерийный тип производства.

Крупносерийное производство характеризуется изготовлением изделий периодически повторяющимся партиями. В таком производстве применяют специальное, специализированное и универсальное оборудование и приспособления.

Для экономической оценки используют в основном две характеристики: себестоимость и трудоемкость.

Трудоемкость - количество времени (в часах), затрачиваемое на изготовление одной единицы изделия. Трудоемкость процесса составляет сумма трудоемкости по всем операциям.

Трудоемкость операций складывается из подготовительно-заключительного времени Т пз, приходящегося на единицы продукции, и штучного времени Т ш, затрачиваемого на выполнение данной операции. Численно трудоемкость операции Т равна штучно-калькуляционному времени Т шк, которое может быть рассчитано по формуле:

где n - количество деталей в партии, определяется по формуле:

;

где 480 мин - продолжительность одной рабочей сметы в минутах;

Подготовительно-заключительное время за смену складывается, в основном, из длительности подготовительно-заключительных операций для резки и штамповки. Примем:

мин в смену;

мин в смену.

Рассчитаем трудоемкость операции резки:

Штучное время резки:резки;

Количество деталей в партии: шт;

Трудоемкость операции резки: мин;

Рассчитаем трудоемкость операции штамповки:

Штучное время резки:резки;

Количество деталей в партии: шт;

Трудоемкость операции штамповки: мин;

Величина, обратная технологической норме времени Т, называется нормой выработки Q:

Согласно полученному значению трудоемкости, нормы выработки:

(1/мин);

(1/мин).

Производительность технологического процесса определяется количеством деталей, изготавливаемых за единицу времени(час, смена):

где Ф - фонд рабочего времени, мин;

Сумма трудоемкости по всем операциям процесса (в данном случае по двум: резке и штамповке).

Производительность технологического процесса: деталей в смену.

При экономической оценке варианта изготовления отдельной детали достаточно определить его технологическую себестоимость . Она отличается от полной тем, что в нее входят прямые затраты на основные материалы и производственная заработная плата, а также расходы, связанные с содержанием и эксплуатацией оборудования и инструмента.

;

где С м - стоимость основных материалов или заготовок, руб./шт.;

З - заработная плата производственных рабочих, руб./шт.;

1,87 - коэффициент, учитывающий затраты на возмещение изношенного инструмента, оснастки и расходы на содержание и эксплуатацию оборудования, вместе взятые, составляют 87 % от заработной платы.

Стоимость основного материала определяется по формуле:

где М н. р. - норма расхода материала или масса заготовки, кг/шт.;

С м.о. - оптовая цена материала или заготовки, руб./кг;

m о - масса реализуемых отходов, кг/шт.;

С о - стоимость отходов, принимается в размере 10 % от стоимости основного материла, руб./кг.

Масса реализуемых отходов определяется по формуле:

где М з - масса заготовки детали, кг/шт.;

М д - масса детали, кг/шт.

Масса заготовки вычисляется по формуле:

;

где V - объем заготовки детали;

ρ- плотность материала заготовки, г/см 3 ;

S л –площадь листа;

t л - толщина листа;

n – число деталей из листа.

Масса заготовки: кг.

Масса детали уже рассчитана ранее: М з =0,006 кг.

Масса реализуемых отходов: кг.

Оптовая цена стали 10: С м.о. = 1100 руб.·т=1,1 руб.·кг.

Тогда цена отходов: С о =0,1·1,1=0,11 руб.·кг.

Стоимость основного материала: руб. на деталь.

Заработная плата в зависимости от конкретных условий изготовления детали может быть выражена следующим образом:

где Кз - коэффициент, учитывающий доплаты к заработной плате рабочим (на отпуска, за ночные смены), а также отчисления на социальное страхование;

ti - норма штучного времени на выполнение технологической операции, мин./шт.;

Si - ставка квалификационного разряда рабочего, руб./ч;

n - число технологических операций.

В данном случае примем во внимание 2 операции: резку полос на гильотинных ножницах и штамповку детали. По уже рассчитанным значениях:

t 1 =0,0015 мин.;

t 2 =0,034 мин.;

Квалификационный разряд рабочего, выполняющего операцию резки - II; а операцию штамповки - III.

Тарифная ставка первого квалификационного разряда рабочего принимается - 4,5 руб./ч. Тарифная ставка каждого последующего квалификационного разряда рабочего увеличивается в 1,2 раза.

Для рабочих механических цехов доплаты к заработной плате составляют около 4,5 %, а отчисления на социальные нужды - 7,8 %, т.е. К з =1,13.

В результате получаем заработную плату, приходящуюся на одну единицу изделия:

Окончательно получаем технологическую себестоимость единицы продукции:


10. Расчет размера партии деталей

Программа выпуска: N=1000 тыс.шт

Действительный годовой фонд времени: Ф=2000 час.

Тогда ритм производства должен быть: дет/час

Если Т ш штамповки =0,034 мин, то дет/час

Из время на установку и снятие штампа t=30+10=40 мин, а зарплата рабочего 3 разряда З р = 4,5 руб/час *1,44 = 6,48 руб/час.

Тогда руб

Расчет размера партии заготовок

Из наладка упоров гильотинных ножниц 3,5мин, установка зазора между ножами пусть будет 16,5 мин, тогда t п.з. = 3,5+16,5 = 20мин, а затраты на наладку рабочего II разряда рубполос/час.

Если Т ш резки = 0,0015мин, то полос/час.

Пусть с 2 ’ = 0,01*10 -3 руб, тогдаполос.
11. Рекомендации по наладке ножниц

Зазор между ножами регулируют в зависимости от толщины и прочности разрезаемого материала передвижением стола, для чего необходимо отпустить гайки болтов крепления стола к станине и при помощи 2 регулировочных винтов установить необходимый зазор, после чего гайки надо затянуть. Для установки ножей после переточки рекомендуется применять прокладки из фольги или другого тонкого листового материала.

Величину зазора определяем по табл. 11 в .

Наладка упоров . Для обрезки полос различной ширины применяются задний, передний и боковой упоры, упоры-угольники и упоры-кронштейны. Наладку заднего упора производят путем его перемещения с помощью маховичков по линейка или шаблонам. Если наладку производят по шаблону, то последний устанавливают кромкой в упор к нижнему ножу, а ко второй его кромке вплотную придвигают задний упор и закрепляют винтами. Наладку переднего упора производят по шаблону, уложенному на стол. Упоры –угольники, упоры-кронштейны и боковые упоры крепят к столу в различных положениях в зависимости от необходимости.

Задний упор

0,075 0,05

0,075

Ножи38,75 38,75

Нижний нож


Верхний нож


Нижний нож

Рис. 3. Наладка ножниц.

12. Безопасность труда

Основной задачей техники безопасности является обеспечение безопасных и здоровых условий труда без снижения его производительности . Для этого проводится большой комплекс мероприятий по созданию таких условий.

С целью предупреждения производственного травматизма подвижные части станков, рабочие зоны оборудования, технологической оснастки снабжаются оградительными устройствами (барьеры, решетки, кожухи, щитки и т. д.). Для обеспечения воздушной среды на рабочем месте, соответствующей санитарным нормам, станки, другое технологическое оборудование снабжаются индивидуальными или групповыми отсасывающими устройствами.

Большое значение имеет охрана окружающей среды. Для уменьшения загрязнений необходимо применение безотходных технологий, создание очистных сооружений, позволяющих многократно использовать одни и те же объемы воды, воздуха в защитных системах.

При разработке технологических процессов изготовления деталей необходимо предусматривать конкретные меры, обеспечивающие безопасные условия труда, охрану окружающей среды при изготовлении рассматриваемой детали.

Для обеспечения безопасности труда на операции резки с помощью гильотинных ножниц, помимо безопасной конструкции инструмента, рабочий должен использовать тканевые рукавицы для подачи листа материала внутрь ножниц, чтобы не поранить руки, а также халат, чтобы избежать порчи одежды при смазке листа.

Охрана окружающей среды при резке осуществляется по средством утилизации отходов, остающихся после нарезки листа на полосы, а при работе со смазкой следует аккуратно наносить ее на лист материла.

При штамповке рабочему необходимо быть предельно внимательным при включении штампа, так как он не снабжен ограждениями, а также использовать тканевые рукавицы для подачи полосы материала в штамп.

Отходы от штамповки должны утилизироваться, не нанося вреда окружающей среде.

Таким образом, использование типового технологического процесса облегчает проектирование, конструирование детали, ее изготовление и контроль.

Благодаря экономии не только времени, которое было бы затрачено на разработку в случае отсутствия такого "прототипа", но и сокращение затрат, требующихся на исправление и утилизацию брака при использовании неотработанных технологии, оборудования и оснастки, удается получить хорошие экономические показатели технологического процесса изготовления и сборки даже для небольших партий продукции и оборудования.

Наибольшее время при использовании типового процесса приходится затрачивать на технологическую подготовку производства, которая необходима для подгонки "прототипа" для конкретной детали. Учитывая, что многие операции из ТПП являются стандартными и вполне могли бы выполняться с помощью вычислительной техники, в настоящее время преобладающим является тенденция к поной или хотя бы частичной автоматизации процесса технологической подготовки производства.

Приложения Библиографический список

1. Дриц М. Е., Москалев М. А. "Технология конструкционных материалов и материаловедение: Учеб. для вузов. - М. Высш. шк., 1990. - 447 с.: ил.

2. Зубцов М. Е. "Листовая штамповка". Л.: Машиностроение, 1980, 432 с.

3. Конструкторско-технологический классификатор деталей.

4. Лекции по курсу "Технология машиностроительного производства" Лобанова С. А., 2001 г.

5. Мансуров И. З., Подрабинник И. М. Специальные кузнечно-прессовые машины и автоматизированные комплексы кузнечно-штампового производства: Справочник. М. : Машиностроение, 1990. 344 с.

6. Справочник нормировщика / Под общей ред. А. В. Ахумова. Л. : Машиностроение, 1987. 458 с.

7. Технология машиностроительного производства. Методические указания к курсовому проектированию/ Рязан. гос. радиотехн. акад; Сост.: А. С. Кирсов, С. Ф. Стрепетов, В. В. Коваленко; Под ред. С. А. Лобанова. Рязань, 2000. 36 с.

8. Правила оформления технологических документов: Методические указания к курсовому и ди пломному проектированию/ Рязан. гос. радиотехн. акад; Сост. А. С. Кирсов, Л. М. Мокров, В. И. Рязанов, 1997. 36 с.