Расчет количества диффузоров для вентиляции на м2. Расчет системы вентиляции и ее отдельных элементов: площади, диаметров труб, параметров нагревателей и диффузоров. Щелевые распределители воздушных потоков

Елена Гальцева - инженер-проектировщик.

Основные используемые формулы:

1.Расчет производительности вентилятора:

L=VxK


L – производительность, которая должна быть у вентилятора, чтобы справиться с поставленной перед ним задачей, м 3 /час.

V – объем помещения (произведению S площади помещения, на h – его высоту), м 3 .

K – нормавоздухообмена для различных помещений (см. табл.1 в статье "как подобрать вентилятор").



2. Для расчета количества диффузоров используют формулу:

N=L/(2820xVxd 2)

N – кол-во диффузоров, шт;

L – расход воздуха, м 3 /час;

D – диаметр диффузора, м;

3. Для подбора количества решеток используют следующую формулу: N = L/(3600xVxS)

N– кол-во решеток;

L – расход воздуха, м 3 /час;

V – скорость движения воздуха, м/сек,

(скорость воздуха для офисных помещений 2-3 м/сек, для жилых помещений 1,5-1,8 м/сек;

S – площадь живого сечения решетки, м 2 .

После составления полной схемы размещения оборудования, определяются диаметры воздуховодов.


4. Зная кол-во воздуха, которое необходимо подать в каждое помещение, можно подобрать сечение воздуховодапо формуле:

S=L/Vx3600

S – площадь поперечного сечения, м 2 ;

L – расход воздуха, м 3 /час;

V – скорость воздуха в зависимости от типа воздуховода, т.е. магистральный или ответвления, м/сек.

5. Зная S , вычисляем диаметр воздуховода:

D= 2x √(S/ 3.14)

6. Мощность электрического канального нагревателя рассчитывается по формуле:

P=Vx0,36x ∆T

Р – мощность нагревателя, Вт;

V – объём воздуха проходящий через нагреватель, м 3 /час (= производительности вентилятора);

∆Т – увеличение температуры воздуха, 0 С (т.е. перепад температур – наружного и поступающего из системы в помещение – который должен обеспечить нагреватель).

∆Т рассчитывается из пожеланий заказчика и наличия у него для этого необходимой электрической мощности. Целесообразней всего брать ∆Т в пределах 10-20 ºС.


Основные принципы:

Все помещения в здании разделяются на те, в которые следует подавать приточный воздух (спальни, детские комнаты и т. д.), на те, из которых следует производить вытяжку (кухни, санузлы), и смешанные (подвалы, чердаки, гаражи, и т. д.).
Для подачи воздуха в те помещения, из которых производится преимущественно вытяжка, устанавливаются, например, укороченные двери или специальные решетки, что позволяет обеспечить достаточный воздухообмен путем перетекания воздуха из других помещений квартиры.

Сегодня кроме простых приточных установок (см. рис.), предлагаются установки с рекуперацией тепла. Система с рекуперацией тепла состоит из двух отдельных контуров; по одному свежий воздух подается в жилое пространство, по другому отводится отработанный. Требуемое количество наружного воздуха подается вентилятором, затем производится его очистка в фильтрах. Другой вентилятор забирает отработанный воздух, направляет его в теплообменник, для передачи тепла отработанного воздуха наружному приточному. Очень хорошо зарекомендовали себя установки LMF (Италия) производительностью от900до 4200м 3 /час.


Aventis LMF

Проектирование.

При проектировании вентустановок прежде всего следует определить:
- место установки вентиляционного агрегата
- расположение приточных и вытяжных отверстий
- места прокладки воздуховодов в помещениях
- определить помещения, в которые следует подавать приточный воздух, производить вытяжку, и смешанные помещения
Чтобы гарантированно избежать в помещении запахов и остатков вредных веществ, расход вытяжного воздуха может превышать расход приточного на 10% в системах с механической подачей. В этом случае образуется незначительное разрежение, благодаря которому предотвращается попадание вытяжного воздуха назад в помещение.

Воздуховоды.

В приточных и вытяжных системах лучше использовать воздуховодов из оцинкованной стали, так как гладкие трубы имеют наименьшее сопротивление.

Размеры воздуховодов определяются по расходу приточного и вытяжного воздуха (см. формулу №5).

Для снижения потерь давления, а также для предотвращения аэродинамических шумов из-за слишком высокой скорости воздуха, при проектировании воздуховодов следует обеспечивать:

  • простое и регулярное расположение приточно-вытяжных шахт;
  • как можно более короткие участки воздуховодов;
  • как можно меньшее количество изгибов и ответвлений;
  • герметичное исполнение соединений.

Приточные и вытяжные решетки.

Приточные и вытяжные решетки должны быть расположены в верхней части стен или на потолке. Количество решеток зависит от их характеристик и от расхода воздуха (см. формулы №2 и 3). Через приточную решетку производится раздача воздуха в помещение, поэтому его конструкция должна обеспечивать хорошее распределение воздуха. Для хорошего воздухообмена приточные и вытяжные решетки желательно располагать напротив друг друга.


Пример расчета вентиляторов для системы вентиляции.

Сопротивление прохождению воздуха в вентиляционной системе, в основном, определяется скоростью движения воздуха в этой системе. С увеличением скорости возрастает и сопротивление. Это явление называется потерей давления. Статическое давление, создаваемое вентилятором, обуславливает движение воздуха в вентиляционной системе, имеющей определенное сопротивление. Чем выше сопротивление такой системы, тем меньше расход воздуха, перемещаемый вентилятором. Расчет потерь на трение для воздуха в воздуховодах, а также сопротивление сетевого оборудования (фильтр, шумоглушитель, нагреватель, клапан и др.) может быть произведен с помощью соответствующих таблиц и диаграмм, указанных в каталоге. Общее падение давления можно рассчитать, просуммировав показатели сопротивления всех элементов вентиляционной системы.

Тип

Скорость воздуха, м/с

Магистральные воздуховоды

6,0-8,0

Боковые ответвления

4,0-5,0

Распределительные воздуховоды

1,5-2,0

Приточные решетки у потолка

1,0-3,0

Вытяжные решетки

1,5-3,0

Определение скорости движения воздуха в воздуховодах:

V= L / 3600*F (м/сек)

где L – расход воздуха, м3/ч; F – площадь сечения канала, м2.

Потеря давления в системе воздуховодов может быть снижена за счет увеличения сечения воздуховодов, обеспечивающих относительно одинаковую скорость воздуха во всей системе. На изображении мы видим, как можно обеспечить относительно одинаковую скорость воздуха в сети воздуховодов при минимальной потере давления.

Расчет диффузора

Исходные данные:

· Рабочий диапазон частот 5000…10000 Гц;

· Номинальное давление Рн = 0.33 Па;

· Максимальная амплитуда смещения xm = 0.3410-3 м.;

· Частота механического резонанса fp = 3000Гц;

· Масса звуковой катушки mзк 0.0003 кг.

Выбираем материал для изготовления диффузора.

В качестве материала для изготовления диффузора используется композиция бумажной массы с плотностью д 0.9103 и значение модуля упругости такой композиции равно Е = 9109 .

Вычисляем радиус диффузора таким образом, чтобы обеспечить заданное номинальное давление Рн при заданном уровне нелинейных искажений (который определяется максимальной амплитудой xm).

rд = = 0.017 м.

Определим массу диффузора:

А= 0.000138 м.

Расчет гибкой подвески

Исходные данные:

· Частота резонанса подвижной системы fр = 3000 Гц;

· Масса звуковой катушки mзк 0.0003 кг;

· Масса диффузора 0.00015 кг;

· Радиус диффузора rд = 0.017 м.

Определим массу подвижной системы:

m = mд + mзк + mc = 0.00047 кг.,

mc = 50 = 0.00002 кг.

Определим общую гибкость подвески при помощи известного значения частоты механического резонанса:

Распределяем гибкость между элементами подвески - воротом и центрирующей шайбой сш. для широкополосного громкоговорителя выполняется следующее условие:

Считая, что гибкость и сш соединены последовательно, получаем:

свом = c(1+) = 1,810-5 ,

сш = = 910-6 .

Для изготовления гофра будем использовать Целюлоза сулфатная беленая 30-70%

Профиль гофра - плоский

Находим ширину гибкого ворота по формуле:

bвом = ?вор= 0.0016м.,

Вом = 0.7= 9.6310-5 м.,

k3 - коэффициент, который выбирается в зависимости от профиля гофра k3 = 1,

k4 - коэффициент, который определяется отношением k4 = 1.

Задаем число гофров равным 2 и вычисляем шаг гофра:

lвом = = 0.00052 м.

Тогда можно выбрать тип центрирующей шайбы и материал для её изготовления, профиль шайбы и соотношение между высотой шайбы и её шагом:

материал для изготовления центрирующей шайбы - креп-шифон,

профиль центрирующей шайбы - трапециевидный,

отношение высоты шайбы к её шагу =0.

Определим ширину центрирующей шайбы bш:

Общая формула имеет вид:

Ш = 1= 0.000138 м.,

Производя все расчеты с данной методикой, получаем:

bш1 = 0.0012 м.,

bш2 = 0.0012 м.

Значение bш возьмем как среднее между bш1 и bш2, тогда

Определим число шагов шайбы (nш) и определим этот шаг (lш):

Расчет магнитной системы

Исходные данные:

· Номинальное звуковое давление Рн = 0.33 Па;

· Масса подвижной системы m = 0.00047 кг,

· Длина провода звуковой катушки lп= 2.34 м;

· Ширина магнитного зазора bз = 0.001 м;

· Высота магнитного зазора hмз = 0.0028 м;

· Диаметр керна dk = 0.01 м;

· Радиус диффузора rд = 0.017м;

· Номинальная электрическая мощность Р = 1.2 Вт;

· Электрическое сопротивление катушки z = 4 Ом.

Расчет магнитной системы производят в три этапа, но перед началом расчетов определим основной входной параметр системы - значение магнитной индукции в зазоре Вз.

Вз = = 0.67 Тл,

0 - плотность воздуха 0 = 1.29 .

Первый этап расчета магнитной системы:

1. Выбираем тип магнитной системы.

2. В качестве материала, из которого изготавливается магнит, выберем прессованный магнит ЗБА. Зададимся значениями индукции Вр и напряженности Нр для данного материала магнита:

Вр = 0.95 Тл;

3. Найдем объем магнита:

Vм = = 1.310-6 м3.

4. Определим магнитную проводимость зазора, пользуясь формулой:

gз = = 9.93710-7 См.

5. Определим высоту магнита:

hм = = 0.0149 м.

6. Определяем площадь сечения и диаметр магнитов:

Sм = = 0.00009 м2,

Внутренний диаметр для кольцевого магнита:

dм2 = dk + = 0.0157м.

7. Задаем размеры магнитопровода. Внутренний размер

Толщину верхнего и нижнего фланцев принимаем такой, что равняется высоте зазора hмз.

Второй этап расчета магнитной системы:

1. Рассчитаем проводимость всех зон рассеивания и определим полную проводимость магнитной системы:

g = gз + g1 + g2 + g3 + g4 + g5.

g1 = 2.5 9.3810-8 См;

Пм - периметр сечения магнита, который включает в себя длину внутреннего и внешнего окружностей Пм = 2(0.5 dм1 + 0.5 dм2) 0.584 м;

hм - высота магнита.

g2 = 0.26 dk= 1.0310-8 См;

dk - диаметр керна.

g3 = dk= 3.5310-8 См;

Внешний диаметр фланца,

Ширина воздушного зазора.

g4 = 2 dkln() = 5,9110-8 См;

Внутренний диаметр кернового магнита,

Высота магнита.

Тогда g = 3.0010-7 См.

2. Пользуясь кривой размагничивания В(Н), строим отношение как функцию Н (рис.6).

3. Исходя из магнитного закона Ома (Ф = gFм), рассчитаем фактическое значение отношения:

4. Пользуясь графиками = f(H) и В(Н), находим фактическую рабочую точку на кривой размагничивания и соответствующее ей значение магнитной индукции:

Нрф = 24103 ,

Врф = 1.1 Тл.

5. Используя магнитный закон Ома, находим:

Вф = Врф Sм= 0.438Тл.

Третий этап расчета магнитной системы:

Сравним фактическую магнитную индукцию в зазоре Вф с необходимым значением индукции Вз и фактическое значение удельной энергии 0.5 Нрф Врф с максимальным для данного материала 0.5 Нр Вр. Отклонение от этих значений не больше, чем на 10, т.е. Вф = (0.8…1.1) Вз и Нрф Врф = (0.9…1) Нр Вр, является допустимым.

Различают два основных способа вентиляции зданий:

  • вентиляция вытеснением;
  • вентиляция перемешиванием.

Преимущественно используется для вентилирования больших промышленных помещений, поскольку она может эффективно удалять излишки тепловыделений, если правильно рассчитана. Воздух пода¬ется на нижний уровень помещения и течет в рабочую зону с малой скоростью. Этот воздух должен быть несколько холоднее, чем воздух помещения, чтобы работал принцип вытеснения. Этот метод обеспечивает прекрасное качество воздуха, но он менее пригоден для использования в офисах и других небольших помещениях, поскольку терминал направленной подачи воздуха занимает довольно много места и часто непросто избежать сквозняков в рабочей зоне.

Воздух, который несколько холоднее, чем воздух в помещении, подается в рабочую зону.


Является предпочтительным способом раздачи воздуха в ситуациях, когда необходима так называемая комфортная вентиляция. Основой этого метода является то, что подаваемый воздух поступает в рабочую зону уже смешанным с воздухом помещения. Расчет системы вентиляции должен быть сделан таким образом, чтобы воздух, циркулирующий в рабочей зоне, был достаточно комфортным. Другими словами, скорость воздуха не должна быть слишком большой и температура внутри помещения должна быть более или менее однородной.

Воздух подается одним или несколькими воздушными струями вне рабочей зоны.


Воздушная струя, входящая в помещение, вовлекает в поток и перемешивает большие объемы окружающего воздуха. В результате объем воздушной струи увеличивается, тогда, как ее скорость снижается тем больше, чем дальше он проникнет в помещение. Подмешивание окружающего воздуха в воздушный поток называется эжекцией.

Движения воздуха, вызванные воздушной струей, вскоре тщательно перемешивают весь воздух в помещении. Загрязняющие примеси, находящиеся в воздухе, не только распыляются, но и равномерно распределяются. Температура в различных частях помещения также выравнивается. При расчетах вентиляции перемешиванием самым важным моментом является обеспечение того, чтобы скорость воздуха в рабочей зоне не была слишком высокой, иначе возникает ощущение сквозняка.


Воздушная струя состоит из нескольких зон с различными режимами потоков и скоростями перемещения воздуха. Зона, представляющая наибольший практический интерес, — это основной участок. Скорость в центре (скорость вокруг центральной оси) является обратно пропорциональной расстоянию от диффузора или клапана, т. е. чем дальше от диффузора, тем меньше скорость воздуха. Воздушная струя полностью развивается на основном участке, и превалирующие здесь условия будут оказывать решающее воздействие на режим потоков в помещении в целом.

От формы диффузора или проходного отверстия воздухораспределителя зависит форма воздушной струи. Круглые или прямоугольные проходные отверстия создают компактную воздушную струю конической формы. Для того чтобы воздушная струя была абсолютно плоской, проходное отверстие должно быть более чем в двадцать раз шире своей высоты или таким же широким, как помещение. Воздушные веерные струи получаются при прохождении через совершенно круглые проходные отверстия, где воздух может распространяться в любых направлениях, как в приточных диффузорах.


Коэффициент диффузора

Коэффициент диффузора — постоянная величина, которая зависит от формы диффузора или клапана. Коэффициент можно рассчитать теоретически с использованием следующих факторов: импульсное рассеивание и сужение воздушной струи в точке, где она подается в помещение, и степень турбулентности, созданная диффузором или клапаном.

На практике коэффициент определяют для каждого типа диффузора или клапана, измеряя скорость воздуха как минимум в восьми точках, находящихся на разном расстоянии от диффузора/клапана и не менее чем в 30 см друг от друга. Эти значения затем наносят на график с логарифмическим масштабом, который показывает замеренные величины для основного участка воздушной струи, а это, в свою очередь, дает значение для константы.

Коэффициент диффузора дает возможность рассчитать скорости воздушной струи и прогнозировать распределение и путь воздушной струи. Этот коэффициент отличен от коэффициента К, который используется для введения верного значения объема воздуха, выходящего из приточного воздухораспределителя или ирисового.



Теперь линия должна быть нарисована от пересечения углового коэффициента 1 на шкале у, чтобы получить значение для коэффициента диффузора К.

Используя значения, полученные для основного участка воздушной струи, тангенс (коэффициент угла) выводится на угол -1 (45°).

Эффект настилания

Если воздухораспределитель установлен в достаточной близости от плоской поверхности (обычно это потолок), выходящая воздушная струя отклоняется в ее сторону и стремится течь непосредственно по поверхности. Этот эффект возникает вследствие образования разряжения между струей и поверхностью, а так как нет возможности подмеса воздуха со стороны поверхности, то струя отклоняется в ее сторону. Это явление называется настилающим эффектом.

Практические эксперименты показали, что расстояние между верхней кромкой диффузора или клапаном и потолком ("а" на рис. выше) не должно превышать 30 см, чтобы возник настилающий эффект. Эффект настилания можно использовать для того, чтобы увеличить путь холодной воздушной струи вдоль потолка до внедрения ее в рабочую зону. Коэффициент диффузора будет несколько выше при возникновении насти¬лающего эффекта, чем при свободном воздушном потоке. Так же важно знать, как крепится диффузор или клапан при использовании коэффициента диффузора для проведения различных расчетов.

Картина распределения становится более сложной, когда подаваемый воздух теплее или холоднее, чем внутри помещения. Тепловая энергия, возникающая в результате разницы в плотности воздуха при различных температурах, заставляет более холодный воздушный поток двигаться вниз (струя тонет), а более теплый воздух устремляется вверх (струя всплывает). Это означает, что две различные силы оказывают воздействие на холодную струю, находящуюся у потолка: эффект настилания, который старается прижать ее к потолку, и тепловая энергия, которая стремится опустить ее к полу. На определенном расстоянии от выхода диффузора или клапана тепловая энергия будет преобладать, и воздушная струя в конечном итоге отклонится от потолка.

Отклонение струи и точка отрыва могут быть рассчитаны с помощью формул, основанных на температурных дифференциалах, на типе выходного отверстия диффузора или клапана, а также на скорости воздушного потока и т. д.

Отклонение

Отклонение от потолка к центральной оси воздушного потока (Y) может быть рассчитано следующим образом:

Точка отрыва

Точка, где коническая воздушная струя оторвется от потопе составит:

После того, как струя оторвется от потолка, новое направление струи может быть рассчитано при помощи формулы для отклонения (cм. выше). Под расстоянием (х) в этом случае понимается расстояние от точки отрыва.


Для большинства воздухораспределительных устройств в Каталоге приведена характеристика, называемая длина струи. Под длиной струи понимается расстояние от приточного отверстия диффузора или клапана до сечения воздушной струи, в котором скорость ядра потока снижается до определенного значения, обычно до 0,2 м/сек. Длина струи обозначается 10,2 и измеряется в метрах.

Первое, что принимается во внимание при расчетах систем воздухораспределения, — это то, как избежать слишком высоких скоростей воздушного потока в рабочей зоне. Но, как правило, в рабочую зону попадает отраженный или обратный ток этой струи.

Скорость обратного воздушного потока составляет примерно 70% от скорости основной воздушной струи у стены. Это означает, что диффузор или клапан, установленный на задней стене, подающий струю воздуха с конечной скоростью 0,2 м/сек, вызовет скорость воздуха в обратном потоке 0,14 м/сек. Что соответствует комфортной вентиляции в рабочей зоне, скорость воздуха в которой не должна превышать 0,15 м/с.

Длина струи для описанного выше диффузора или клапана такая же, как длина помещения, и в данном примере является прекрасным выбором. Приемлемая длина струи для установленного на стене диффузора лежит между 70 % и 100 % длины помещения.

Обтекание препятствий

Воздушная струя при наличии препятствий на потолке в виде перекрытий, светильников и др., если они расположены слишком близко от диффузора, может отклониться и опуститься в рабочую зону. А потому необходимо знать, какое расстояние должно быть (А на графике) между устройством, подающим воздух, и препятствиями для свободного продвижения струи воздуха.

Расстояние до препятствия (эмпирическое)

График показывает минимальное расстояние до препятствия как функцию высоты препятствия (h на рис.) и температуры воздушной струи в самой низкой точке.


Если подаваемый вдоль потолка воздух холоднее воздуха в помещении, важно, чтобы скорость воздушной струи была достаточно высока, чтобы обеспечить ее прилегание к потолку. Если ее скорость будет слишком мала, существует риск того, что тепловая энергия может- на править воздушную струю вниз, к полу, слишком рано. На определенном расстоянии от диффузора, подающего воздух, воздушная струя в любом случае отделится от потолка и отклонится вниз. Это отклонение случится быстрее для воздушной струи, которая имеет температуру ниже комнатной, а потому в этом случае длина струи будет короче.

Воздушная струя должна пройти, по крайней мере, 60% глубины помещения, прежде чем отделится от потолка. Максимальная скорость воздуха в рабочей зоне будет, таким образом, почти такой же, как и при подаче изотермического воздуха.

Когда температура подаваемого воздуха ниже комнатной, воздух в помещении будет до некоторой степени охлаждаться. Приемлемый уровень охлаждения (известный как максимальный эффект охлаждения) зависит от требований к скорости воздуха в рабочей зоне, от расстояния до диффузора, на котором воздушная струя отделяется от потолка, а также от типа диффузора и его местоположения.

В общем, большая степень охлаждения достигается при использовании потолочного, а не настенного диффузора. Это происходит потому, что потолочный диффузор распространяет воздух во всех направлениях, а потому ему требуется меньше времени для смешивания с окружающим воздухом и для выравнивания температуры.

Поправки для длины струи (эмпирические)

График можно использовать для получения примерного значения для длины неизотермической струи.

8.3.1. Степень расширения диффузора на безотрывном участке:

где L д – длина безотрывной части диффузора; рекомендуемые значения относительной длины безотрывной части диффузора L д /h к = 1,5  2,5.

8.3.2. Площадь на выходе из безотрывного участка диффузора, м 2:

F 1 = F к n д,

где F к – площадь проточной части последней ступени компрессора.

8.3.3. Средний диаметр на выходе из безотрывного участка диффузора, м:

,

где  д =10  12 – угол раскрытия безотрывного участка диффузора.

8.3.4. Высота выходного сечения безотрывного участка диффузора, м:

.

8.3.5. Наружный и внутренний диаметры выходного сечения диффузора, м:

D н = d д + h 1 ;D вн = d д – h 1 .

8.3.6. Площадь поперечного сечения участка внезапного расширения, м 2:

,

где k р = 1,15  1,25 – относительная площадь участка внезапного расширения.

8.3.7. Высота сечения участка внезапного расширения, м:

.

8.3.8. Наружный и внутренний диаметры внезапного расширения, м:

;
.

8.3.9. Расстояние от плоскости внезапного расширения до жаровой трубы, м:

l = (1,5  2,0)h к.

8.3.10. Коэффициент потерь давления в диффузоре:

где  д = 0,45 – коэффициент потерь полного давления для диффузоров с внезапным расширением. Если отнести к скоростному напору q = ρw к /2 в камере, то
.

8.4. Расчет проточной части камеры сгорания

8.4.1. Площадь миделевого сечения камеры сгорания, м 2

,

где R = 293 Дж/кгК – газовая постоянная; P к /P к – падение давления в камере; P к /q к – коэффициент потерь в камере, рекомендуемые значения которых приведены в табл.8.1.Здесь q = ρw к /2 --- скоростной напор в камере сгорания

Таблица 8.1

Тип камеры

Трубчатая

Трубчато-кольцевая

Кольцевая

Необходимо отметить, что приведенные в таблице данные соответствуют условиям работы камеры на взлетном режиме. Для обеспечения работы КС в высотных условиях и высотного запуска необходимо увеличить площадь (F m высот  1,5F взл). Это следует из зависимости =0,0046(для кольцевых камер сгорания).Вследствие уменьшения Tk , Pk в высотных условиях, увеличенные размеры КС являются исходными и для расчетного режима.

8.4.2. Средний диаметр КС определяется в зависимости от средних диаметров компрессора и турбины, м:

где l с p – относительное расстояние от входа в жаровую трубу до расчетного сечения (следует принять l с p = 0,5).

8.4.3. Для кольцевой КС, определяющей величиной, является высота (расстояние между наружной и внутренней стенками), м:

.

8.4.4. Диаметры наружной и внутренней обечаек кольцевой КС, м:

;
.

8.4.5. Площадь миделевого сечения жаровой трубы, м 2:

,

где k opt – относительная площадь жаровой трубы (для кольцевой камеры сгорания
).

8.4.6. Высота кольцевой жаровой трубы, м:

.

8.4.7 . Диаметры наружной и внутренней обечаек жаровой трубы в расчетном сечении, м:

D ж.н = d cp + H ж; D ж.вн = d cp – H ж.

8.4.8. Длина жаровой трубы, м, определяется из условия обеспечения заданной неравномерности температурного поля :

,

где  = 0,2  0,4; А – коэффициент пропорциональности; для кольцевых камер сгорания А = 0,06;

относительное падение давления в жаровой трубе определяется по формуле:

, где

– относительные падения давления в камере и диффузоре задается согласно (табл. 7.1).

относительное падение давления в диффузоре

8.4.9. Общая длина КС, м, складывается из длины диффузора L д, жаровой трубы L ж и расстояния между ними l(см. п.п8.39) :

L к = L к + l + L к.