Основы общей теории относительности эйнштейна. Сто лет общей теории относительности. Кто помогал Эйнштейну. Эффекты, связанные с ускорением систем отсчёта

Про эту теорию говорили, что её понимают только три человека в мире, а когда математики попытались цифрами выразить то, что из неё следует, сам автор - Альберт Эйнштейн - шутил, что теперь и он перестал её понимать.

Специальная и общая теория относительности - неразрывные части учения, на котором строятся современные научные взгляды на устройство мира.

«Год чудес»

В 1905 году ведущий научный печатный орган Германии «Annalen der Physik» («Анналы физики») опубликовал одну за другой четыре статьи 26-летнего Альберта Эйнштейна, работавшего экспертом 3-го класса - мелким клерком - Федерального бюро патентования изобретений в Берне. Он и раньше сотрудничал с журналом, но публикация такого количества работ за один год была экстраординарным событием. Оно стало еще более выдающимся, когда стала ясна ценность идей, которые содержались в каждой из них.

В первой из статей высказывались мысли о квантовой природе света, рассмотрены процессы поглощения и выделения электромагнитного излучения. На этой основе был впервые объяснен фотоэффект - испускание веществом электронов, выбиваемых фотонами света, предложены формулы для расчета количества выделяемой при этом энергии. Именно за теоретические разработки фотоэлектрического эффекта, ставшие началом квантовой механики, а не за постулаты теории относительности Эйнштейну будет присуждена в 1922 году Нобелевская премия по физике.

В другой статье было положено начало прикладным направлениям физической статистики на основе исследования броуновского движения мельчайших, взвешенных в жидкости частиц. Эйнштейн предложил методы поиска закономерности флуктуаций - беспорядочных и случайных отклонений физических величин от их наиболее вероятных значений.

И наконец, в статьях «К электродинамике движущихся тел» и «Зависит ли инерция тела от содержания в нем энергии?» содержались зародыши того, что будет обозначено в истории физики как теория относительности Альберта Эйнштейна, вернее её первая часть - СТО, - специальная теория относительности.

Источники и предшественники

В конце XIX века многим физикам казалось, что большинство глобальных проблем мироздания решено, главные открытия сделаны, и человечеству предстоит лишь использовать накопленные знания для мощного ускорения технического прогресса. Лишь некоторые теоретические неувязки портили гармоническую картину Вселенной, заполненной эфиром и живущей по незыблемым ньютоновским законам.

Гармонию портили теоретические изыскания Максвелла. Его уравнения, которые описывали взаимодействия электромагнитных полей, противоречили общепринятым законам классической механики. Это касалось измерения скорости света в динамических системах отсчета, когда переставал работать принцип относительности Галилея, - математическая модель взаимодействия таких систем при движении со световой скоростью приводила к исчезновению электромагнитных волн.

Кроме того, не поддавался обнаружению эфир, который должен был примирить одновременное существование частиц и волн, макро и микрокосмоса. Эксперимент, который провели в 1887 году Альберт Майкельсон и Эдвард Морли имел целью обнаружение “эфирного ветра”, который неизбежно должен был быть зафиксирован уникальным прибором - интерферометром. Опыт длился целый год - время полного обращения Земли вокруг Солнца. Планета должна была полгода двигаться против эфирного потока, полгода эфир должен был «дуть в паруса» Земли, но результат был нулевым: смещения световых волн под воздействием эфира не обнаружили, что ставило под сомнение сам факт существования эфира.

Лоренц и Пуанкаре

Физики попытались найти объяснение результатам экспериментов по обнаружению эфира. Свою математическую модель предложил Хендрик Лоренц (1853-1928). Она возвращала к жизни эфирное заполнение пространства, но лишь при очень условном и искусственном предположении, что при движении сквозь эфир объекты могут сокращаться в направлении движения. Эту модель доработал великий Анри Пуанкаре (1854-1912).

В работах этих двух ученых впервые появились понятия, во многом составившие главные постулаты теории относительности, и это не дает утихнуть обвинениям Эйнштейна в плагиате. К ним относятся условность понятия об одновременности, гипотеза о постоянности скорости света. Пуанкаре допускал, что при больших скоростях законы механики Ньютона требуют переработки, делал вывод об относительности движения, но в приложении к эфирной теории.

Специальная теория относительности - СТО

Проблемы корректного описания электромагнитных процессов стали побудительной причиной для выбора темы для теоретических разработок, и опубликованные в 1905 году статьи Эйнштейна содержали интерпретацию частного случая - равномерного и прямолинейного движения. К 1915году была сформирована общая теория относительности, которая объясняла и взаимодействия гравитационные взаимодействия, но первой стала теория, получившая название специальной.

Специальная теория относительности Эйнштейна кратко может быть изложена в виде двух основных постулатов. Первый распространяет действие принципа относительности Галилея на все физические явления, а не только на механические процессы. В более общей форме он гласит: Все физические законы одинаковы для всех инерциальных (движущихся равномерно прямолинейно или находящихся в покое) систем отсчета.

Второе утверждение, которое содержит специальная теория относительности: скорость распространения света в вакууме для всех инерциальных систем отсчета одинакова. Далее делается более глобальный вывод: световая скорость - максимально большая величина скорости передачи взаимодействий в природе.

В математических выкладках СТО приводится формула E=mc², которая и раньше появлялась в физических публикациях, но именно благодаря Эйнштейну она стала самой знаменитой и популярной в истории науки. Вывод об эквивалентности массы и энергии - это самая революционная формула теории относительности. Понятие того что любой объект, обладающий массой, содержит огромное количество энергии стало основой для разработок по использованию ядерной энергии и, прежде всего, привело к появлению атомной бомбы.

Эффекты специальной теории относительности

Из СТО вытекает несколько следствий, получивших название релятивистских (relativity англ. -относительность) эффектов. Замедление времени - один из самых ярких. Суть его в том, что в движущейся системе отсчета время идет медленнее. Расчеты показывают, что на космическом корабле, совершившем гипотетический полет до звездной системы Альфа-Центавра и обратно при скорости 0,95 c (c -скорость света) пройдет 7,3 года, а на Земле - 12 лет. Такие примеры часто приводят, когда объясняется теория относительности для чайников, как и связанный с этим эффектом парадокс близнецов.

Еще один эффект - сокращение линейных размеров, - то есть с точки зрения наблюдателя, движущиеся относительно него со скоростью, близкой к c, предметы, будут иметь меньшие линейные размеры в направлении движения, чем их собственная длина. Этот предсказываемый релятивистской физикой эффект называется лоренцевым сокращением.

По законам релятивистской кинематики масса движущегося объекта больше массы покоя. Этот эффект становится особенно значим при разработке приборов для исследования элементарных частиц - без учета его трудно представить себе работу БАКа (Большого андронного коллайдера).

Пространство-время

Одним из важнейших компонентов СТО является графическое отображение релятивистской кинематики, особое понятие единого пространства-времени, которое предложил немецкий математик Герман Минковский, бывший одно время преподавателем математики у студента Альберта Эйнштейна.

Суть модели Минковского заключается в совершенно новом подходе к определению положения вступающих во взаимодействие объектов. Специальная теория относительности времени уделяет особое внимание. Время становится не просто четвертой координатой классической трехмерной системы координат, время - не абсолютная величина, а неотделимая характеристика пространства, которое принимает вид пространственно-временного континуума, графически выраженного в виде конуса, в котором и происходят все взаимодействия.

Такое пространство в теории относительности, с её развитием до более обобщающего характера, в дальнейшем было подвергнуто ещё и искривлению, что сделало такую модель подходящей для описания и гравитационных взаимодействий.

Дальнейшее развитие теории

СТО не сразу нашла понимание у физиков, но постепенно она стала основным инструментом описания мира, особенно мира элементарных частиц, который становился главным предметом изучения физической науки. Но задача дополнения СТО объяснением сил тяготения была очень актуальной, и Эйнштейн не прекращал работу, оттачивая принципы общей теории относительности - ОТО. Математическая обработка этих принципов заняла довольно много времени - около 11 лет, и в ней приняли участие специалисты смежных с физикой областей точных наук.

Так, огромный вклад внес ведущий математик того времени Давид Гильберт (1862-1943), ставший одним из соавторов уравнений гравитационного поля. Они явились последним камнем в построении прекрасного здания, получившего наименование - общая теория относительности, или ОТО.

Общая теория относительности - ОТО

Современная теория гравитационного поля, теория структуры «пространство-время», геометрия «пространства-времени», закон физических взаимодействий в неинерциальных системах отчета - всё это различные наименования, которыми наделена общая теория относительности Альберта Эйнштейна.

Теория всемирного тяготения, которая в течении долгого времени определяла взгляды физической науки на гравитацию, на взаимодействия объектов и полей различного размера. Парадоксально, но основным её недостатком была нематериальность, иллюзорность, математичность её сути. Между звездами и планетами находилась пустота, притяжение между небесными телами объяснялось дальнодействием неких сил, причем мгновенным. Общая теория относительности Альберта Эйнштейна наполнила гравитацию физическим содержанием, представила её как непосредственный контакт различных материальных объектов.

Геометрия гравитации

Главная идея, с помощью которой Эйнштейн объяснил гравитационные взаимодействия очень проста. Физическим выражением сил тяготения он объявляет пространство-время, наделенное вполне ощутимыми признаками - метрикой и деформациями, на которые влияет масса объекта, вокруг которого образуются такие искривления. Одно время Эйнштейну даже приписывали призывы вернуть в теорию мироздания понятие эфира, как упругой материальной среды, заполняющей пространство. Он же разъяснял, что ему трудно называть вауумом субстанцию, обладающую множеством качеств, поддающихся описанию.

Таким образом, гравитация - проявление геометрических свойств четырехмерного пространства-времени, которое было обозначено в СТО как неискривлённое, но в более общих случаях ото наделяется кривизной, определяющей движение материальных объектов, которым придается одинаковое ускорение в соответствии с декларируемым Эйнштейном принципом эквивалентности.

Этот основополагающий принцип теории относительности объясняет многие «узкие места» ньютоновской теории всемирного тяготения: искривление света, наблюдаемое при прохождении его около массивных космических объектов при некоторых астрономических явлениях и, отмеченное еще древними одинаковое ускорение падения тел, независимо от их массы.

Моделирование кривизны пространства

Обычным примером, с помощью которого объясняется общая теория относительности для чайников, является представление пространства-времени в виде батута - упругой тонкой мембраны, на которую выкладывают предметы (чаще всего шары), имитирующие взаимодействующие объекты. Тяжелые шары прогибают мембрану, образуя вокруг себя воронку. Более мелкий шар, запущенный по поверхности, двигается в полном соответствии с законами гравитации, постепенно скатываясь в углубления, образованные более массивными объектами.

Но такой пример достаточно условен. Реальное пространство-время многомерно, кривизна его тоже не выглядит так элементарно, но принцип формирования гравитационного взаимодействия и суть теории относительности становятся понятны. В любом случае, гипотезы, которая более логично и связно объяснила бы теорию гравитации, пока не существует.

Доказательства истинности

ОТО быстро стала восприниматься как мощное основание, на котором может строиться современная физика. Теория относительности с самого начала поражала своей стройностью и гармонией, и не только специалистов, и вскоре после своего появления стала подтверждаться наблюдениями.

Самая близкая к Солнцу точка - перигелий - орбиты Меркурия постепенно смещается относительно орбит других планет Солнечной системы, что было обнаружено еще в середине XIX века. Такое перемещение - прецессия - не находило разумного объяснения в рамках Ньютоновской теории всемирного тяготения, но было с точностью рассчитано на основе общей теории относительности.

Затмение Солнца, которое произошло в 1919 году предоставило возможность для очередного доказательства ОТО. Артур Эддингтон, который в шутку называл себя вторым человеком из трех, что понимают основы теории относительности, подтвердил предсказанные Эйнштейном отклонения при прохождении фотонов света вблизи светила: в момент затмения стало заметно смещение видимого положения некоторых звезд.

Эксперимент по обнаружению замедления хода часов или гравитационного красного смещения был предложен самим Эйнштейном в числе других доказательств ОТО. Лишь спустя долгие годы удалось подготовить необходимое экспериментальное оборудование и провести этот опыт. Гравитационное смещение частот излучения от излучателя и приёмника, разнесенных по высоте оказалось в пределах, предсказанных ОТО, а физики из Гарварда Роберт Паунд и Глен Ребка, которые провели этот эксперимент, в дальнейшем только повысили точность измерений, и формула теории относительности снова оказалась верной.

В обосновании самых значимых проектов исследования космического пространства обязательно присутствует теория относительности Эйнштейна. Кратко можно сказать, что она стала инженерным инструментом специалистов, в частности тех, кто занимается спутниковыми системами навигации - GPS, ГЛОНАСС и т.д. Рассчитать координаты объекта с нужной точностью, даже в относительно небольшом пространстве, без учета замедлений сигналов, предсказанных ОТО, невозможно. Тем более если речь идет об объектах, разнесенных на космические расстояния, где ошибка в навигации может быть огромной.

Творец теории относительности

Альберт Эйнштейн был еще молодым человеком, когда опубликовал основы теории относительности. Впоследствии ему самому становились ясны её недостатки и нестыковки. В частности, самой главной проблемой ОТО стала невозможность её врастания в квантовую механику, поскольку при описании гравитационных взаимодействий используются принципы, радикально отличающиеся друг от друга. В квантовой механике рассматривается взаимодействие объектов в едином пространстве-времени, а у Эйнштейна само это пространство формирует гравитацию.

Написание "формулы всего сущего" - единой теории поля, которая устранила бы противоречия ОТО и квантовой физики, было целью Эйнштейна на протяжении долгих лет, он работал над этой теорией до последнего часа, но успеха не достиг. Проблемы ОТО стали стимулом для многих теоретиков в поиске более совершенных моделей мира. Так появлялись теории струн, петлевая квантовая гравитация и множество других.

Личность автора ОТО оставила след в истории сравнимый со значением для науки самой теории относительности. Она не оставляет равнодушным до сих пор. Эйнштейн сам удивлялся, почему столько внимания уделялось ему и его работам со стороны людей, не имевших к физике никакого отношения. Благодаря своим личным качествам, знаменитому остроумию, активной политической позиции и даже выразительной внешности Эйнштейн стал самым знаменитым физиком на Земле, героем множества книг, фильмов и компьютерных игр.

Конец его жизни многими описывается драматически: он был одинок, считал себя ответственным за появление самого страшного оружия, ставшего угрозой всему живому на планете, его теория единого поля осталась нереальной мечтой, но лучшим итогом можно считать слова Эйнштейна, сказанные незадолго до смерти о том, что свою задачу на Земле он выполнил. С этим трудно спорить.


«ЗС» №7-11/1939

Лев Ландау

В этом году исполняется 60 лет величайшему физику нашего времени - Альберту Эйнштейну. Эйнштейн знаменит созданной им теорией относительности, которая вызвала настоящую революцию в науке. В наших представлениях об окружающем нас мире принцип относительности, выдвинутый Эйнштейном еще в 1905 г., произвел такой же громадный переворот, какой в свое время произвело учение Коперника.
До Коперника люди думали, что они живут в абсолютно покойном мире, на неподвижной Земле - центре вселенной. Коперник опрокинул этот вековой предрассудок, доказав, что на самом деле Земля - лишь крошечная песчинка в необъятном мире, находящаяся в непрерывном движении. Это было четыреста лет тому назад. А теперь Эйнштейн показал, что такая привычная и, казалось бы, совершенно ясная для нас вещь как время, также обладает совершенно иными свойствами, чем те, которые мы ему обычно приписываем…

Для того чтобы полностью разобраться в этой весьма сложной теории, нужны большие знания в области математики и физики. Однако общее представление о ней может и должен иметь каждый культурный человек. Такое общее представление о принципе относительности Эйнштейна мы и попытаемся дать в нашей статье, которая будет печататься частями в трех номерах «Знание - сила».

В обработке этой статьи для юного читателя приняли участие: Э.Зеликович, И.Нечаев и О.Писаржевский.

Относительность, к которой мы привыкли

Всякое ли утверждение имеет смысл?

Очевидно, нет. Например, если вы произнесете «би-ба-бу», то никто не найдет в этом восклицании никакого смысла. Но даже вполне осмысленные слова, соединенные по всем правилам грамматики, тоже могут дать полнейшую чепуху. Так, фразе «лирический сыр смеется» трудно приписать какой бы то ни было смысл.

Однако не все бессмыслицы так очевидны: очень часто утверждение, на первый взгляд вполне разумное, оказывается все же по существу нелепым. Скажите, например, на какой стороне Пушкинской площади в Москве стоит памятник Пушкину: на правой или на левой?

Ответить на этот вопрос невозможно. Если идти от Красной площади к площади Маяковского, то памятник будет слева, а если идти в обратном направлении, он окажется справа. Ясно, что без указания направления, относительно которого мы считаем «право» и «лево», эти понятия не имеют никакого смысла.

Точно так же нельзя сказать, что сейчас на земном шаре: день или ночь? Ответ зависит от того, где этот вопрос задается. Когда в Москве день, в Чикаго - ночь. Следовательно, утверждение «сейчас день или ночь» не имеет никакого смысла, если не указано, к какому месту земного шара оно относится. Такие понятия будем называть «относительными».

На двух изображенных здесь рисунках показаны пастух и корова. На одном рисунке пастух больше коровы, а на другом корова больше пастуха. Но всякому ясно, что противоречия здесь нет. Рисунки сделаны наблюдателями, находившимися в разных местах: первый стоял ближе к корове, второй - ближе к пастуху. В картинах важны не размеры предметов, а тот угол, под которым мы видели бы эти предметы в действительности.

Ясно, что «угловая величина» предмета относительна: она зависит от расстояния между ними и предметом. Чем ближе предмет, тем его угловая величина больше и тем большим он выглядит, а чем дальше предмет, тем его угловая величина меньше и тем меньшим он кажется.

Абсолютное оказалось относительным

Не всегда, однако, относительность наших понятий так очевидна, как в приведенных примерах.

Мы часто говорим «наверху» и «внизу». Абсолютные ли это понятия, или относительные? В прежние времена, когда еще не было известно, что Земля шарообразна, и ее представляли себе в виде плоского блина, считалось само собой понятным, что направления «верха» и «низа» во всем мире одни и те же.

Но вот обнаружилось, что Земля шарообразна, и оказалось, что направления вертикали в разных точках земной поверхности различны.

Все это не вызывает у нас теперь никаких сомнений. Между тем история показывает, что понять относительность «верха» и «низа» было не так-то легко. Люди очень склонны приписывать абсолютное значение понятиям, относительность которых неясна из повседневного опыта. Вспомним смехотворное «возражение» против шарообразности Земли, пользовавшееся большим успехом в средние века: на «другой стороне» Земли, мол, деревья должны были бы расти вниз, дождевые капли - падать вверх, а люди ходили бы вниз головой.

И действительно, если считать направление вертикали в Москве абсолютным, то получится, что в Чикаго люди ходят вверх ногами. А с абсолютной точки зрения людей, живущих в Чикаго, москвичи ходят вверх ногами. Но на самом деле вертикальное направление не абсолютно, а относительно. И всюду на Земле, хотя она и шарообразна, люди ходят только вверх головой.

И движение относительно

Представим себе двух путешественниц, едущих в экспрессе Москва - Владивосток. Они уславливаются встречаться ежедневно в одном и том же месте вагона-ресторана и писать своим мужьям письма. Путешественницы уверены, что они выполняют условие, - что они ежедневно являются в то же место, где были вчера. Однако их мужья не согласятся с этим: они будут решительно утверждать, что путешественницы встречались каждый день в новом месте, удаленном от предыдущего на тысячу километров.

Кто же прав: путешественницы или их мужья?

У нас нет оснований отдать предпочтение тем или другим: понятие «одно и то же место» - относительно. Относительно поезда путешественницы действительно встречались все время «там же», а относительно земной поверхности место их встречи постоянно менялось.

Таким образом, положение в пространстве - понятие относительное. Говоря о положении тела, мы всегда подразумеваем его положение относительно других тел. Поэтому, если бы нам предложили указать, где находится такое-то тело, не упоминая в ответе о других телах, мы должны были бы счесть подобное требование совершенно невыполнимым.

Отсюда следует, что относительно также и перемещение, или движение, тел. И когда мы говорим «тело движется», то это значит только, что оно изменяет свое положение относительно каких-то других тел.

Вообразим, что мы наблюдаем из различных пунктов движение тела. Условимся называть такие пункты «лабораториями». Нашими воображаемыми лабораториями может быть все что угодно в мире: дома, города, поезда, самолеты, Земля, другие планеты, Солнце и даже звезды.

Какою же покажется нам траектория, то есть путь движущегося тела?

Все зависит от того, из какой лаборатории мы наблюдаем ее. Допустим, что летчик выбрасывает из самолета груз. С точки зрения летчика груз летит вниз вертикально по прямой, а с точки зрения наблюдателя на земле падающий груз описывает кривую линию - параболу. По какой же траектории груз движется в действительности?

Этот вопрос имеет так же мало смысла, как вопрос о том, какая фотография человека «настоящая», - та, на которой он снят спереди, или та, на которой он снят сзади?

Геометрическая форма кривой, по которой движется тело, имеет такой же относительный характер, как и фотоснимок человека. Фотографируя человека спереди и сзади, мы получим различные снимки, и каждый из них будет совершенно правилен. Точно так же, наблюдая за движением какого-либо тела из различных лабораторий, мы видим различные траектории, и все эти траектории - «настоящие».

Но все ли они будут для нас равноценны? Нельзя ли все-таки найти такой пункт наблюдения, такую лабораторию, откуда мы наилучшим образом могли бы изучать законы, управляющие движением тела?

Мы только что сравнили траектории движущегося тела с фотоснимками человека - и те и другие могут быть самыми разнообразными, - все зависит от того, из какого пункта вы наблюдаете движение тела или делаете снимок. Но вы знаете, что в фотографии не все точки зрения равноценны. Например, если вам нужен снимок для удостоверения, то вы, естественно, пожелаете быть заснятым с лица, а не сзади. Точно так же и в механике, то есть при изучении законов движения тел, мы должны из всех возможных пунктов наблюдения выбрать наиболее подходящий.

В поисках покоя

Мы знаем, что на движение тел оказывают влияние внешние воздействия, которые мы называем силами. Но мы можем себе представить тело, которое свободно от влияния каких бы то ни было сил. Условимся же раз и навсегда считать, что тело, на которое не действуют никакие силы, находится в состоянии покоя. Теперь, введя понятие покоя, мы как будто уже получаем некоторую твердую опору при изучении движения тел. В самом деле, это тело, на которое не действуют никакие силы и которое мы условились считать покоящимся, может нам служить как бы ориентиром, «путеводной звездой» при исследовании движения всех других тел.

Вообразим, что мы убрали какое-нибудь тело так далеко от всех других тел, что на него уже не будут действовать никакие силы. И тогда мы сможем установить, как должны протекать на таком покоящемся теле физические явления. Иначе говоря, мы можем найти законы механики, господствующие в этой воображаемой «покоящейся» лаборатории. А сравнивая их с тем, что мы наблюдаем в других, реальных лабораториях, мы сможем уже судить об истинных свойствах движения во всех случаях.

Итак, казалось бы, все прекрасно устраивается: мы нашли опорный пункт - «покой», хотя и условный, и теперь движение для нас потеряло свою относительность.

Однако на самом деле и этот призрачный с таким трудом достигнутый «покой» не будет абсолютным.

Представьте себе наблюдателей, живущих на одиноком шаре, затерянном в безбрежных просторах вселенной. Они не чувствуют на себе влияния никаких посторонних сил и, следовательно, должны быть убеждены в том, что шар, на котором они живут, находится в полной неподвижности, в абсолютном, неизменном покое.

Вдруг они замечают вдали другой такой же шар, на котором находятся такие же наблюдатели. С огромной скоростью несется этот второй шар, прямолинейно и равномерно, навстречу первому. Наблюдатели на первом шаре не сомневаются в том, что они-то стоят на месте, а движется лишь второй шар. Но обитатели этого второго шара также верят в свою неподвижность и твердо уверены в том, что это первый «чужой» шар движется им навстречу.

Кто же из них прав? Спор по этому поводу не имеет никакого смысла, так как состояние прямолинейного и равномерного движения совершенно невозможно отличить от состояния покоя.

Чтобы убедиться в этом, нам с вами не надо даже забираться в бесконечные глубины вселенной. Сядьте в речной пароход, стоящий у пристани, запритесь в каюте и хорошенько занавесьте окна. При таких условиях вы никогда не обнаружите, стоите ли вы на месте или двигаетесь прямолинейно и равномерно. Все тела в каюте будут вести себя в обоих случаях совершенно одинаково: поверхность воды в стакане останется все время спокойной; мяч, подброшенный вертикально вверх, упадет так же вертикально вниз; маятник часов будет качаться так же, как на стене вашей квартиры.

Ваш пароход может идти с любой скоростью, но на нем будут господствовать такие же точно законы движения, как и на совершенно неподвижном пароходе. Только в момент замедления хода или при ускорении его вы можете обнаружить его движение; когда же он идет прямолинейно и равномерно, все протекает на нем так же, как и на неподвижном судне.

Таким образом, мы не нашли нигде абсолютного покоя, а обнаружили, что в мире может существовать бесконечно много «покоев», движущихся друг относительно друга равномерно и прямолинейно. Поэтому, когда мы говорим о движении какого-либо тела, то всегда надо указать, относительно какого именно «покоя» оно движется. Это положение называется в механике «законом относительности движения». Оно было выдвинуто еще триста лет тому назад Галилеем.

Но если движение и покой относительны, то и скорость, очевидно, должна быть относительной. Так оно и есть на самом деле. Допустим, например, что вы бежите по палубе парохода со скоростью 5 метров в секунду. Если пароход проходит в том же направлении 10 метров в секунду, то относительно берега ваша скорость будет равна уже 15 метрам в секунду.

Поэтому утверждение: «тело движется с такой-то скоростью», без указания, относительно чего скорость измерена, не имеет смысла. Определяя скорость движущегося тела из разных пунктов, мы должны получать разные результаты.

Все то, о чем мы до сих пор говорили, было известно задолго до работ Эйнштейна. Относительность движения, покоя и скорости была установлена еще великими творцами механики - Галилеем и Ньютоном. Открытые им законы движения легли в основу физики и в течение почти трех столетий много способствовали развитию всех естественных наук. Бесчисленные новые факты и законы открывались исследователями, и все они еще и еще раз подтверждали правильность воззрений Галилея и Ньютона. Подтверждались эти воззрения и в практической механике - при конструировании и эксплуатации всякого рода машин и аппаратов.

Так продолжалось до конца XIX века, когда были обнаружены новые явления, которые оказались в решительном противоречии с законами классической механики.

В 1881 году американский физик Майклсон предпринял серию опытов по измерению скорости света. Неожиданный результат этих опытов внес смятение в ряды физиков; он был настолько поразителен и загадочен, что поставил в тупик величайших ученых мира.

Замечательные свойства света

Быть может, вам приходилось наблюдать такое интересное явление.

Где-то вдали, в поле, на полотне железной дороги или на площадке строительства, бьет молот. Вы видите, как тяжело он падает на наковальню или на стальной рельс. Однако звука от удара совершенно не слышно. Кажется, что молот опустился на что-то очень мягкое. Но вот он снова поднимается. И в момент, когда он уже находится довольно высоко в воздухе, вы слышите отдаленный резкий стук.

Нетрудно понять, почему это происходит. При обычных условиях звук распространяется в воздухе со скоростью около 340 метров в секунду, поэтому удар молота мы слышим не в тот момент, когда он происходит, а лишь после того, как звук от него успевает дойти до нашего уха.

Вот другой, более разительный пример. Молния и гром происходят одновременно, но часто кажется, что молнии сверкают бесшумно, так как раскаты грома достигают нашего уха только через несколько секунд. Если мы слышим их с опозданием, например, в 10 секунд, то это значит, что молния удалена от нас на 340 х 10 = 3400 метров, или 3,4 километра.

В обоих случаях мы говорим о двух моментах: о том, когда какое-то событие произошло на самом деле, и о моменте, в который отзвук этого события достиг нашего уха. Но откуда мы знаем, когда именно событие произошло на самом деле?

Мы видим это: мы видим, как опускается молот, как сверкает молния. При этом мы предполагаем, что событие действительно происходит в тот самый момент, когда мы видим его. Но так ли это на самом деле?

Нет, не так. Ведь мы не воспринимаем события непосредственно. В явлениях, которые мы наблюдаем с помощью зрения, участвует свет. А свет распространяется в пространстве не мгновенно: как и у звука, у лучей света уходит время на преодоление расстояния.

В пустоте свет распространяется со скоростью около 300 тысяч километров в секунду. Это значит: если на расстоянии в 300 тысяч километров от вас вспыхнул свет, вы можете заметить его вспышку не сразу, а лишь секунду спустя.

В одну секунду лучи света успели бы семь раз обогнуть земной шар по экватору. По сравнению с такой колоссальной скоростью земные расстояния кажутся незначительными, поэтому практически можно считать, что все происходящие на Земле явления мы видим в тот же момент, когда они происходят.

Невообразимо огромная скорость света может показаться удивительной. Гораздо удивительнее, однако, другое: то, что скорость света отличается поразительным постоянством. Посмотрим, в чем это постоянство заключается.

Известно, что движение тел можно искусственно замедлять и ускорять. Если, например, поставить на пути полета пули ящик с песком, то в ящике пуля потеряет часть своей скорости. Потерянная скорость не восстановится: выйдя из ящика, пуля полетит дальше уже не с прежней, а с уменьшенной скоростью.

Иначе ведут себя лучи света. В воздухе они распространяются медленнее, чем в пустоте, в воде - медленнее, чем в воздухе, а в стекле - еще медленнее. Однако, выйдя из любого вещества (конечно, прозрачного) в пустоту, свет продолжает распространяться со своей прежней скоростью - 300 тысяч километров в секунду. При этом скорость света не зависит от свойств его источника: она совершенно одинакова у лучей и Солнца, и прожектора, и свечи. Кроме того, безразлично, движется ли сам источник света, или нет - на скорости света это никак не отражается.

Чтобы полностью уяснить себе смысл этого факта, сравним еще раз распространение света с движением обычных тел. Вообразите, что вы пускаете на улице из брандспойта струю воды со скоростью 5 метров в секунду. Это значит, что каждая частица воды проходит относительно улицы 5 метров в секунду. Но если поместить брандспойт на автомобиль, проходящий в направлении струи 10 метров в секунду, то скорость струи относительно улицы будет равна уже 15 метрам в секунду: частицам воды сообщается скорость не только брандспойтом, но и движущимся автомобилем, который увлекает брандспойт вместе со струей вперед.

Сравнивая источник света с брандспойтом, а его лучи - со струей воды, мы увидим существенное различие. Для лучей света безразлично, из какого источника они попали в пустоту и что происходило с ними до того, как они вошли в пустое пространство. Раз они находятся в нем, скорость их распространения равна одной и той же величине - 300 тысячам километров в секунду, и независимо от того, движется ли источник света, или нет.

Посмотрим, как эти особенные свойства света согласуются с законом относительности движения, о котором шла речь в первой части статьи. Для этого попробуем решить задачу на сложение и вычитание скоростей, причем для простоты примем, что все воображаемые нами явления происходят в пустоте, где скорость света равна 300 тысячам километров.

Пусть на движущемся пароходе, в самой середине его, помещается источник света, а на каждом из концов парохода - по наблюдателю. Оба они измеряют скорость распространения света. Каковы будут результаты их работы?

Так как лучи распространяются во все стороны, а оба наблюдателя движутся вместе с пароходом в одну сторону, то получится такая картина: наблюдатель, находящийся на заднем конце парохода, движется навстречу лучам, а передний все время удаляется от них.

Поэтому первый наблюдатель должен найти, что скорость света равна 300 тысячам километров плюс скорость парохода, а второй - 300 тысячам километров минус скорость парохода. И если мы вообразим на минуту, что пароход проходит в секунду чудовищное расстояние в 200 тысяч километров, то скорость света, найденная первым наблюдателем, будет 500 тысяч километров, а вторым - 100 тысяч километров в секунду. На неподвижном же пароходе оба наблюдателя получили бы один и тот же результат - 300 тысяч километров в секунду.

Таким образом, с точки зрения наблюдателей, на нашем движущемся пароходе свет как будто распространяется в одну сторону в 1 2/3 раза быстрее, а в другую - втрое медленнее, чем на покоящемся. Произведя несложные арифметические действия, они смогут установить абсолютную скорость парохода.

Точно так же мы можем установить абсолютную скорость всякого другого движущегося тела: для этого достаточно поместить на него какой-либо источник света и измерить из разных точек тела скорость распространения световых лучей.

Иначе говоря, мы неожиданно оказались в состоянии определить скорость, а следовательно, и движение тела безотносительно от всех других тел. Но если есть абсолютная скорость, то существует и единый, абсолютный покой, а именно: всякая лаборатория, в которой наблюдатели, измеряя скорость света в любых направлениях, получают одну и ту же величину - 300 тысяч километров в секунду, и будет абсолютно покоящейся.

Нетрудно видеть, что все это решительно противоречит тем выводам, к которым мы пришли в предыдущем номере журнала. В самом деле: мы говорили о том, что на теле, движущемся прямолинейно равномерно, все протекает так, как на неподвижном. Поэтому, будем ли мы, например, стрелять на пароходе по направлению его движения или против движения, скорость пули относительно парохода останется одной и той же и будет равна скорости на неподвижном пароходе. Вместе с тем мы убедились, что движение, скорость и покой - понятия относительные: абсолютных движения, скорости и покоя не существует. А теперь вдруг оказывается, что наблюдения над свойствами света опрокидывают все эти выводы и противоречат открытому Галилеем закону природы - закону относительности движения.

А ведь это один из ее основных законов: он господствует во всем мире; справедливость его подтверждалась на опыте несметное число раз, подтверждается повсеместно и ежеминутно до сих пор; если бы он перестал внезапно быть справедливым, невообразимая сумятица охватила бы вселенную. А вот свет не только не подчиняется ему, но даже опровергает его!

Опыт Майклсона

Что делать с этим противоречием? Прежде чем высказывать те или иные соображения по этому поводу, обратим внимание на следующее обстоятельство: то, что свойства света противоречат закону относительности движения, мы установили исключительно путем рассуждений. Правда, это были весьма убедительные рассуждения. Но, ограничиваясь одними рассуждениями, мы уподобились бы древним философам, которые пытались открыть законы природы не с помощью опыта и наблюдения, а только исходя из одних умозаключений. При этом неизбежно возникает опасность, что созданная таким образом картина мира при всех своих достоинствах окажется весьма мало похожей на действительный мир, окружающий нас.

Верховным судьей всякой физической теории всегда является опыт, а поэтому, не ограничиваясь рассуждениями о том, как должен распространяться свет на движущемся теле, следует обратиться к опытам, которые покажут, как он в этих условиях распространяется на самом деле.

Следует, однако, иметь в виду, что постановка таких опытов затруднительна по очень простой причине: невозможно найти на практике такое тело, которое двигалось бы со скоростью, соизмеримой с колоссальной скоростью света. Ведь такого парохода, каким мы пользовались в нашем рассуждении, конечно, не существует и не может существовать.

Чтобы суметь определить незначительное изменение скорости света на доступных нам, сравнительно медленно движущихся телах, надо было создать измерительные приборы исключительно высокой точности. И только тогда, когда такие приборы удалось изготовить, можно было приступить к выяснению противоречия между свойствами света и законом относительности движения.

Такой опыт был предпринят в 1881 году одним из величайших экспериментаторов новейшего времени, американским физиком Майклсоном.

В качестве движущегося тела Майклсон использовал… земной шар. Действительно, Земля - тело заведомо движущееся: она обращается вокруг Солнца и притом с довольно «солидной» для наших условий скоростью - 30 километров в секунду. Поэтому, изучая распространение света на Земле, мы фактически изучаем распространение света в движущейся лаборатории.

Майклсон с весьма высокой точностью измерил скорость света на Земле в различных направлениях, то есть он практически осуществил то, что мы мысленно проделали с вами на воображаемом движущемся пароходе. Чтобы уловить ничтожную разницу в 30 километров по сравнению с огромным числом в 300 тысяч километров, Майклсону пришлось применить очень сложную экспериментальную технику и проявить всю свою огромную изобретательность. Точность опыта была так велика, что Майклсон имел бы возможность обнаружить и гораздо меньшую разницу в скоростях, чем ту, которую он хотел обнаружить.

Из огня да в полымя

Результат опыта был как будто заранее очевиден. Зная свойства света, можно было предвидеть, что скорость света, измеренная в различных направлениях, окажется различной. Но, быть может, вы думаете, что результат опыта в действительности оказался таким?

Ничего подобного! Эксперимент Майклсона дал совершенно неожиданные результаты. В течение ряда лет его много раз повторяли в самых различных условиях, но он неизменно приводил к одному и тому же поразительному выводу.

На заведомо движущейся Земле скорость света, измеренная в любых направлениях, оказывается совершенно одинаковой.

Значит, свет не представляет никакого исключения. Он подчиняется тому же закону, что пуля на движущемся пароходе, - закону относительности Галилея. Обнаружить «абсолютное» движение Земли так и не удалось. Его не существует, как это и должно быть согласно закону относительности.

Неприятное противоречие, с которым наука столкнулась, было разрешено. Но зато возникли новые противоречия! Физики попали из огня да в полымя.

Чтобы уяснить себе новые противоречия, к которым привел опыт Майклсона, просмотрим наши исследования по порядку.

Сначала мы установили, что абсолютного движения и покоя не существует; об этом говорит закон относительности Галилея. Затем выяснилось, что особые свойства света противоречат закону относительности. Отсюда вытекало, что абсолютное движение и покой все же существуют. Чтобы проверить это, Майклсон произвел эксперимент. Эксперимент показал обратное: никакого противоречия нет - и свет подчиняется закону относительности. Следовательно, абсолютного движения и покоя опять не существует. С другой стороны, выводы из опыта Майклсона, очевидно, применимы для любого движущегося тела, а не только для Земли; стало быть, скорость света одинакова во всех лабораториях, независимо от их собственного движения, и, значит, скорость света - величина все-таки не относительная, а абсолютная.

Получился заколдованный круг. Величайшие физики всего мира годы ломали себе над ним голову. Предлагались различные теории, вплоть до самых невероятных и фантастических. Но ничего не помогало: каждое новое предположение сразу же вызывало новые противоречия. Ученый мир стоял перед одной из величайших загадок.

Самое загадочное и странное во всем этом было то, что наука здесь имела дело с совершенно ясными, твердо установленными фактами: с законом относительности, известными свойствами света и опытом Майклсона. А приводили они, казалось бы, к совершенной нелепости.

Противоречие истин… Но истины не могут противоречить друг другу, так как истина может быть только одна. Следовательно, в нашем понимании фактов должна быть ошибка. Но где? В чем она заключается?

В течение целых 24 лет - с 1881 г. до 1905 г. - не находили ответа на эти вопросы. Но в 1905 году величайший физик современности Альберт Эйнштейн дал загадке гениальное объяснение. Явившееся с совершенно неожиданной стороны, оно произвело на физиков впечатление разорвавшейся бомбы.

Объяснение Эйнштейна настолько не похоже на все понятия, к которым человечество привыкло в течение тысячелетий, что оно звучит исключительно невероятно. Однако, несмотря на это, оно оказалось несомненно правильным: вот уже 34 года, как лабораторные опыты и наблюдения над различными физическими явлениями в мире все более и более подтверждают его справедливость.

Когда открываются двери

Чтобы понять объяснение Эйнштейна, необходимо познакомиться сначала с одним следствием из опыта Майклсона. Рассмотрим его сразу же на примере. Воспользуемся для этого еще раз фантастическим пароходом.

Вообразим пароход длиной в 5400 тысяч километров. Пусть он движется прямолинейно и равномерно с баснословной скоростью в 240 тысяч километров в секунду. В какой-то момент в середине парохода зажигается лампочка. На носу и на корме парохода имеются двери. Устроены они так, что в момент, когда на них падает свет от лампочки, они автоматически открываются. Вот лампочка зажглась. Когда же именно откроются двери?

Чтобы ответить на этот вопрос, вспомним результаты опыта Майклсона. Опыт Майклсона показал, что относительно наблюдателей на движущейся Земле свет распространяется по всем направлениям с одинаковой скоростью в 300 тысяч километров в секунду. То же самое, естественно, произойдет и на движущемся пароходе. Но расстояние от лампочки до каждого из концов парохода равно 2700.000 километров, а 2700.000: 300.000 = 9. Значит, до каждой двери свет от лампочки дойдет через 9 секунд. Таким образом, обе двери откроются одновременно.

Так представится дело наблюдателю на пароходе. А что увидят люди на пристани, мимо которой движется пароход?

Так как скорость света не зависит от движения источника света, то и относительно пристани она равна тем же 300 тысячам километров в секунду, несмотря на то что источник света находится на движущемся пароходе. Но, с точки зрения наблюдателя на пристани, дверь на корме парохода движется навстречу лучу света со скоростью парохода. Когда же дверь встретится с лучом?

Мы имеем здесь дело с задачей, подобной задаче о двух путешественниках, едущих навстречу друг другу. Чтобы найти время встречи, надо расстояние между путешественниками разделить на сумму их скоростей. Поступим и здесь таким же образом. Расстояние между лампочкой и дверью составляет 2700 тысяч километров, скорость двери (то есть парохода) равна 240 тысяч километров в секунду, а скорость света - 300 тысяч километров в секунду.

Следовательно, задняя дверь откроется через

2700.000/(300000 + 240000)=5 секунд

После того, как лампочка зажглась. А передняя?

Переднюю дверь, с точки зрения наблюдателя на пристани, лучу света приходится догонять, так как она движется с пароходом в ту же сторону, что и луч света. Поэтому здесь мы имеем задачу о путешественниках, из которых один догоняет другого. Расстояние будем делить уже на разность скоростей:

2700.000/(300000 - 240000)=45 секунд

Итак, первая дверь откроется через 5 секунд после того, как зажглась лампочка, а вторая - через 45 секунд. Следовательно двери откроются не одновременно. Вот какой представится картина людям на пристани! Картина - самая удивительная из всего того, о чем до сих пор говорилось.

Выходит, что одни и те же события - открытие передней и задней дверей - окажутся для людей на пароходе одновременными, а для людей на пристани - неодновременными, а разделенными промежутком времени в 40секунд.

Не звучит ли это совершеннейшей бессмыслицей? Не похоже ли это на абсурдное утверждение из анекдота - что длина крокодила от хвоста до головы 2 метра, а от головы до хвоста 1 метр?

И, заметьте, людям на пристани не покажется, что двери открылись не одновременно: для них это на самом деле произойдет одновременно. Ведь мы вычислили время, когда открылась каждая из дверей. При этом мы нашли, что вторая дверь действительно открылась на 40 секунд позже первой.

Однако пассажиры парохода так же правильно установили, что обе двери открылись одновременно. И это было показано арифметически. Что же получается? Арифметика против арифметики?!

Нет, арифметика здесь не виновата. Все противоречия, с которыми мы здесь столкнулись, лежат в наших неправильных представлениях о времени: время оказалось вовсе не таким, каким человечество считало его до сих пор.

Эйнштейн пересмотрел эти старые, тысячелетние понятия. При этом он сделал великое открытие, благодаря которому его имя стало бессмертным.

Время относительно

В предыдущем номере мы показали, какие необыкновенные выводы должны были сделать физики из опыта Майклсона. Мы рассмотрели пример с воображаемым пароходом, на котором по световому сигналу открываются две двери, и установили поразительный факт: с точки зрения наблюдателей на пароходе двери открываются в один и тот же момент, а с точки зрения наблюдателей на пристани - в разные моменты.

То, к чему человек не привык, кажется ему невероятным. Случай с дверями на пароходе кажется совершенно невероятным потому, что мы никогда не двигались со скоростью, даже отдаленно приближающейся к баснословному числу в 240 тысяч километров в секунду. Но надо учесть, что явления, происходящие при таких скоростях, могут сильно отличаться от тех, к которым мы привыкли в повседневной жизни.

Разумеется, на самом деле пароходов, передвигающихся со скоростями, близкими к скорости света, не существует. И в действительности никто никогда не наблюдал такого случая с дверями, какой описан в нашем примере. Но сходные явления, благодаря современной высокоразвитой экспериментальной технике, безусловно обнаружить можно. Напомним, что пример с открывающимися дверями построен не на отвлеченных рассуждениях, а исключительно на твердо установленных фактах, полученных путем опыта: опыта Майклсона и многолетних наблюдений над свойствами света.

Итак, именно опыт привел нас к бесспорному выводу, что понятие одновременности двух событий не абсолютно. Прежде мы считали, что если два события произошли в какой-либо лаборатории одновременно, то и для всякой другой лаборатории они будут одновременными. Теперь же мы выяснили, что это справедливо только для лабораторий, покоящихся относительно друг друга. В противном случае события, одновременные для одной лаборатории, произойдут для другой в разное время.

Отсюда вытекает, что понятие одновременности - понятие относительное. Оно приобретает смысл лишь при указании, как движется лаборатория, из которой события наблюдаются.

В начале статьи мы говорили о двух путешественницах, ежедневно являвшихся в вагон-ресторан экспресса. Путешественницы были уверены, что они встречаются все время в одном и том же месте. Мужья же их утверждали, что они встречались каждый день в новом месте, удаленном от предыдущего на тысячу километров.

И те и другие были правы: относительно поезда путешественницы встречались действительно в одном и том же месте, относительно же полотна железной дороги - в разных местах. Этот пример показал нам, что понятие пространства - понятие не абсолютное, а относительное.

Оба примера - о встрече путешественниц и открывании дверей на пароходе - подобны друг другу. В обоих случаях речь идет об относительности, и встречаются даже одинаковые слова: «в один и тот же» и «в разные». Только в первом примере говорится о местах, то есть о пространстве, а во втором - о моментах, то есть о времени. Что же отсюда вытекает?

То, что понятие времени так же относительно, как и понятие пространства.

Чтобы окончательно убедиться в этом, видоизменим несколько пример с пароходом. Предположим, что механизм одной из дверей в неисправности. Пусть из-за этой неисправности люди на пароходе заметят, что передняя дверь открылась на 15 секунд раньше задней. А что увидят люди на пристани?

Если в первом варианте примера передняя дверь открылась для них на 40 секунд позже задней, то во втором варианте это произойдет лишь на 40 - 15 = 25 секунд позже. Получается, таким образом, что для людей на пароходе передняя дверь открылась раньше задней, а для людей на пристани - позже.

Итак, то, что для одной лаборатории было раньше, относительно другой произошло позже. Отсюда ясно, что понятие самого времени - понятие относительное.

Это открытие было сделано в 1905 году двадцатишестилетним физиком Альбертом Эйнштейном. До того человек представлял себе время абсолютным - всюду в мире одинаковым, независимым ни от какой лаборатории. Так некогда люди считали одинаковым во всем мире направления верха и низа.

И вот время постигла судьба пространства. Оказалось, что выражение «в одно и то же время» имеет не больше смысла, чем выражение «в одном и том же месте», если не указано, к какой лаборатории они относятся.

Быть может, у кого-нибудь все же возникает вопрос: ну, а на самом деле, независимо от какой бы то ни было лаборатории, одновременны какие-нибудь два события или нет? Задумываться над этим вопросом так же нелепо, как над вопросом, а где на самом деле, независимо ни от каких лабораторий, находятся в мире верх и низ?

Открытие относительности времени позволило, как вы увидите из дальнейшего, разрешить все противоречия, к которым привел физику опыт Майклсона. Это открытие было одной из величайших побед разума над сложившимися в течение тысячелетий закоснелыми представлениями. Поразив своей необычайностью здесь ученый мир, оно произвело глубочайший переворот во взглядах человечества на природу. По характеру и значению его можно сравнить только с переворотом, вызванным открытием шарообразности Земли или открытием ее движения вокруг Солнца.

Так Эйнштейн, наряду с Коперником и Ньютоном, проложил совершенно новые пути для науки. И недаром открытие этого, еще молодого тогда, ученого быстро стяжало ему славу величайшего физика нашего столетия.

Учение об относительности времени называют обычно «принципом относительности Эйнштейна» или просто «принципом относительности». Его не следует смешивать с законом, или принципом, относительности движения, о котором речь шла раньше, то есть с «классическим принципом относительности», или «принципом относительности Галилея - Ньютона».

Скорость имеет предел

Рассказать в журнальной статье о тех огромных изменениях и обо всем том новом, что принцип относительности внес в науку, невозможно. Кроме того, для понимания всего этого надо хорошо знать физику и высшую математику.

Цель нашей статьи - разъяснение лишь самых основ принципа Эйнштейна и тех важнейших следствий, которые вытекают из относительности времени. Уже одно это, как вы видели, - задача далеко не простая. Заметим, что принцип относительности - один из самых трудных научных вопросов, причем заглянуть в него достаточно глубоко без помощи математики вообще невозможно.

Для начала рассмотрим одно очень важное следствие из относительности времени, касающееся скорости.

Как известно, скорость паровозов, автомобилей и самолетов с момента их изобретения и по сей день непрерывно возрастает. В настоящее время она достигла величины, которая всего несколько десятилетий назад показалась бы невероятной. Она будет увеличиваться и впредь.

В технике известны и гораздо большие скорости. Это, в первую очередь, скорости пуль и артиллерийских снарядов. Быстрота полета пуль и снарядов, благодаря непрерывным техническим усовершенствованиям также возрастала из года в год и будет увеличиваться впредь.

Но наибольшая скорость, которой пользуются в технике, это скорость передачи сигналов с помощью световых лучей, электрического тока и радиоволн. Во всех трех случаях она приблизительно равна одной и той же величине - 300 тысячам километров в секунду.

Можно подумать, что с дальнейшим развитием техники, с открытием каких-нибудь новых лучей и эта скорость будет превзойдена; все увеличивая доступные нам скорости, мы сумеем в конце концов как угодно близко подойти к идеалу мгновенной передачи сигналов или усилий на любые расстояния.

Опыт Майклсона показывает, однако, что идеал этот недостижим. В самом деле, при бесконечно большой скорости передачи сигналы от двух событий при всех условиях доходили бы до нас мгновенно; и если бы в одной какой-нибудь лаборатории два события произошли одновременно, то во всех других лабораториях они тоже наблюдались бы одновременно - в тот же самый момент, когда они произошли. А это означало бы, что «одновременность» стала абсолютной, совершенно не зависящей от движения лабораторий. Но абсолютность времени, как мы видели, опровергнута опытом Майклсона. Следовательно, передача сигналов или усилий не может быть мгновенной.

Другими словами, скорость какой бы то ни было передачи не может быть бесконечно большой. Существует определенный предел скорости - предельная скорость, которая ни при каких условиях не может быть превышена.

Нетрудно убедиться, что предельная скорость совпадает со скоростью света. Ведь согласно принципу относительности Галилея - Ньютона законы природы во всех лабораториях, движущихся относительно друг друга прямолинейно и равномерно, одинаковы. Значит, для всех таких лабораторий предельной должна быть одна и та же скорость. Но какая же скорость сохраняет свою величину неизменной во всех лабораториях? Таким удивительным постоянством, как мы видели, обладает как раз скорость света, и только она! Отсюда следует, что скорость света - не просто скорость распространения какого-то одного (хотя и очень важного) действия в мире: она в то же время есть предельная скорость, существующая в природе.

Открытие существования предельной скорости в природе также было одной из величайших побед человеческой мысли. Физик прошлого столетия не мог бы додуматься до того, что для скорости есть предел. Если же он и наткнулся бы при опытах на факт существования предельной скорости, то он решил бы, что это случайность, что тут виновата только ограниченность его экспериментальных возможностей. Он был бы вправе думать, что с развитием техники предельная скорость может быть превзойдена.

Нам же ясно обратное: рассчитывать на это было бы так же смешно как полагать, что с развитием мореходства можно будет достичь на земной поверхности места, удаленного от исходного пункта более чем на 20 тысяч километров (то есть более чем на половину земной окружности).

Когда минута равна часу?

Чтобы всесторонне разъяснить относительность времени и вытекающие отсюда следствия, которые с непривычки кажутся странными, Эйнштейн пользуется примерами с поездом. Поступим так же и мы. Гигантский поезд, движущийся с воображаемой баснословной скоростью, будем называть «поездом Эйнштейна».

Представим себе очень длинную железную дорогу. На расстоянии 864 миллионов километров одна от другой находятся две станции. Чтобы пройти расстояние между ними, поезду Эйнштейна, движущемуся со скоростью, скажем, 240 тысяч километров в секунду, понадобится час времени. На обеих станциях имеются совершенно точные часы.

На первой станции в поезд садится путешественник. Предварительно он ставит свой карманный хронометр точно по станционным часам. По приезде на другую станцию он сверяет его со станционными часами и с удивлением замечает, что хронометр отстал…

Почему же это произошло?

Допустим, что на полу вагона находится электрическая лампочка, а на потолке - зеркало. Луч света от лампочки, падающий на зеркало, отражается обратно к лампочке. Путь луча, каким его увидит путешественник в вагоне, изображен на верхнем рисунке: луч направляется вертикально вверх и падает вертикально вниз.

Иная картина представится наблюдателю на станции. За время, в течение которого луч света шел от лампочки к зеркалу, зеркало переместилось вместе с поездом. А за время падения отраженного луча переместилась на такое же расстояние сама лампочка. Путь, пройденный лучом с точки зрения наблюдателя на станции, показан на нижнем рисунке: он составляет две стороны разнобедренного треугольника. Основание треугольника образовано путем лампочки, увлекаемой поездом вперед.

Мы видим, что с точки зрения наблюдателя на станции луч света прошел большее расстояние, чем с точки зрения наблюдателя в поезде. Вместе с тем мы знаем, что скорость света отличается постоянством при всех условиях: она совершенно одинакова как для наблюдателя на станции, так и для путешественника в поезде. Что же отсюда вытекает?

Ясно, что если скорости одинаковы, а длина путей различна, то на прохождение меньшего пути затрачивается меньше времени, а на прохождение большего - большее. Легко вычислить отношение обоих времен.

Предположим, что с точки зрения наблюдателя на станции между отправлением луча к зеркалу и возвращением его к лампочке прошло 10 секунд. За эти 10 секунд свет прошел:

300.000 х 10 = 3 млн. километров.

Следовательно, стороны АВ и ВС равнобедренного треугольника АВС равны по 1,5 млн. километров каждая. Сторона же АС 1 основание треугольника, равна пути, пройденному за 10 секунд поездом, а именно:

240.000 х 10 = 2,4 млн. километров.

Половина основания, АD 1 равна 1,2 млн. километров.

Отсюда нетрудно определить высоту вагона - высоту треугольника BD. Из прямоугольного треугольника ABD имеем:

BD 2 = AB 2 - AD 2 = 1,52 - 1,22

Отсюда BD = 0,9 млн. километров.

Высота довольно солидная, что, впрочем, неудивительно при астрономических размерах поезда Эйнштейна.

Путь, пройденный лучом с точки зрения наблюдателя в поезде, равен, очевидно, удвоенной высоте треугольника:

2BD = 2 x 0,9 = 1,8 млн. километров.

Для прохождения этого пути свету понадобится:

1 800 000/300 000 = 6 секунд.

Итак, пока луч света шел от лампочки к зеркалу и обратно, на станции прошло 10 секунд, а в поезде - всего лишь 6 секунд. Отношение времени в поезде ко времени на станциях составляет 6/10.

Отсюда удивительное следствие: по станционному времени поезд затратил на путешествие между станциями час, по хронометру же путешественника всего 6/10 часа, то есть 36 минут. Вот почему за время движения между станциями хронометр путешественника отстал от станционных часов и притом на 24 минуты.

Надо хорошо осмыслить этот факт: хронометр путешественника отстал не потому; что он медленнее шел или неправильно работал. Нет, он работал так же, как часы на станциях. Но время в поезде, движущемся относительно станций, протекало иначе, чем на станциях.

Из схемы с треугольником видно, что чем больше скорость поезда, тем больше должно быть отставание хронометра от поезда к скорости света, можно добиться того, чтобы за час станционного времени в поезде прошел какой угодно малый промежуток времени. Например, при скорости поезда, равной около 0,9999 скорости света, за час станционного времени в поезде пройдет всего лишь 1 минута (или, наоборот, за минуту станционного времени в поезде пройдет час, если наблюдатель на одной станции будет проверять свое время по двум хронометрам, установленным в начале и в конце поезда).

Считая время абсолютным, человек раньше представлял его себе чем-то равномерно текущим, и притом - всюду и при всех условиях в мире с одинаковой скоростью. Но поезд Эйнштейна показывает, что в разных лабораториях темп времени различен. Эта относительность времени есть одно из важнейших свойств физического мира.

Из всего сказанного можно заключить, что описанная Уэллсом в фантастической повести «машина времени» - не такая уж пустая фантазия. Относительность времени раскрывает перед ними возможность - по крайней мере теоретически - путешествия в будущее. Нетрудно видеть, что поезд Эйнштейна является именно «машиной времени».

Машина времени

В самом деле, вообразим, что поезд Эйнштейна движется не прямолинейно, а по окружной железной дороге. Тогда при каждом возвращении на исходную станцию путешественник будет обнаруживать, что его часы отстали по сравнению со станционными.

Приближая скорость поезда к скорости света, можно, как вы уже знаете, добиться того, чтобы за час по станционным часам в поезде прошел какой угодно малый промежуток времени. Это приводит к удивительным результатам: пока в поезде будут протекать лишь годы, на станции минуют сотни и тысячи лет. Выйдя из своей «машины времени», наш путешественник попадет в отделенное будущее… Его родные и знакомые давно уже умерли… В живых он застанет только их отдаленных потомков.

Однако поезд Эйнштейна все же сильно отличается от машины Уэллса. Ведь та, по утверждению романиста, могла совершать движение во времени не вследствие своей большой скорости, а благодаря какому-то особому техническому устройству. Но в действительности никакое такое устройство не может быть создано; это - полнейшая нелепость. Есть только один способ попасть в будущее: придать поезду колоссальную скорость - близкую к скорости света.

Еще одно свойство отличает поезд Эйнштейна от уэллсовской машины времени: он не в состоянии двигаться «назад» по времени, то есть он лишен возможности отправиться в прошлое, а тем самым и вернуться из будущего в настоящее.

Вообще, сама идея движения назад по времени совершенно бессмысленна. Мы можем воздействовать только на то, чего еще не было, но не в состоянии изменить того, что уже было. Это ясно хотя бы из такого примера: если бы можно было двигаться назад во времени, то могло бы случиться так, что человек отправился в прошлое и умертвил своих родителей тогда, когда они еще были младенцами. А вернувшись в настоящее время, он оказался бы в нелепом положении человека, родители которого умерли задолго до его рождения!

Движение со скоростью, близкой к скорости света, открывает теоретически еще одну возможность: вместе с временем преодолевать и любые расстояния. А они могут быть в мировом пространстве так велики, что даже при предельной скорости для большинства путешествий не хватило бы человеческой жизни.

Примером может послужить звезда, удаленная от нас, скажем, на двести световых лет. Поскольку скорость света - наибольшая скорость в природе, то, следовательно, достичь этой звезды раньше, чем через двести лет после старта, невозможно. А так как продолжительность человеческой жизни менее двухсот лет, то, казалось бы, можно с уверенностью утверждать, что человек принципиально лишен возможности достигать далеких звезд.

И все же это рассуждение ошибочно. Ошибка в том, что мы говорим о двухстах годах, как о чем-то абсолютном. А ведь время относительно, то есть общего для всех лабораторий времени нет. На станциях был один счет времени, а в поезде Эйнштейна - другой.

Представим себе звездоплавателя, отправившегося в мировое пространство. Пока он достигнет звезды, удаленной от нас на двести световых лет, по земному времясчислению действительно пройдет двести лет. В ракете же, в зависимости от ее скорости относительно Земли, может протечь, как мы знаем, какой угодно малый промежуток времени.

Таким образом, звездоплаватель достигнет звезды по своему времясчислению не в двести лет, а, скажем, в один год. При достаточной большой скорости теоретически возможно «слетать» на звезду и вернуться по ракетным часам даже в одну минуту…

Более того: при движении с предельной скоростью в мире - 300 тысяч километров в секунду - и время становится предельно малым, то есть равным нулю. Иными словами, если бы ракета могла двигаться со скоростью света, время для находящегося в ней наблюдателя вовсе остановилось бы, и с точки зрения этого наблюдателя момент старта совпал бы с моментом финиша.

Повторяем, что все это мыслимо только теоретически. Практически же путешествие в будущее и на отдаленные звезды неосуществимо, так как передвижение машин и людей со скоростями, близкими к скорости света, по техническим причинам невозможно.

И размеры предметов относительны

Рассуждения и занимательные примеры, приведенные в предыдущих главах, кажутся фантастическими. Но цель их - не увлечь читателя фантастикой, а показать всю глубину и серьезность следствий, вытекающих из относительности времени.

Нетрудно убедиться, что из относительности времени вытекает и относительность размеров тел.

Пусть длина платформы, мимо которой проезжает поезд Эйнштейна, равняется 2,4 млн. километров. При скорости в 240 тысяч километров в секунду поезд проедет платформу в течение 10 секунд. Но за 10 секунд станционного времени в поезде пройдет всего 6 секунд. Отсюда путешественник с полным правом заключит, что длина платформы равна 240 тыс. х 6 = 1,44 млн. километров, а не 2,40 млн. километров.

Это значит, что предмет, покоящийся относительно какой-либо лаборатории, длиннее, чем движущийся. Относительно поезда платформа двигалась, а относительно станции она покоилась. Поэтому для наблюдателя на станции она и была длиннее, чем для путешественника. Вагоны же поезда, наоборот, для наблюдателя на станции были в 10/6 раза короче, чем для путешественника.

С увеличением скорости длина предметов все более уменьшается. Поэтому при наибольшей скорости она должна была бы стать наименьшей, то есть равной нулю.

Итак, всякое движущееся тело сокращается в направлении своего движения. В связи с этим надо внести поправку в один из примеров, приведенных нами в №9 журнала, а именно: при опыте с открыванием дверей на пароходе мы нашли, что для наблюдателя на пристани вторая дверь открылась на 40 секунд позже первой. Но так как длина парохода, двигавшегося со скоростью в 240 тысяч километров в секунду в 10/6 раза сократилась относительно пристани, то действительный промежуток времени между открыванием дверей будет равен по часам на пристани не 40 секундам, а 40: 10/6 = 24 секундам. Принципиальных выводов, сделанных нами из опыта с пароходом, эта числовая поправка, конечно, не меняет.

Относительность размеров тел немедленно влечет за собой новое, быть сможет самое разительное, следствие принципа относительности. «Самое разительное» потому, что именно оно объясняет неожиданный результат эксперимента Майклсона, который внес в свое время сумятицу в ряды физиков. Дело касалось, как вы помните, сложения скоростей, которые по непонятной причине никак не «хотели» подчиняться обыкновенной арифметике.

Человек всегда привык складывать скорости, направленные по прямой и в одну сторону, чисто арифметически, то есть так же просто, как столы или яблоки. Например, если какой-либо корабль плывет в определенном направлении со скоростью в 20 километров в час, а по его палубе идет в том же направлении пассажир со скоростью 5 километров в час, то скорость пассажира относительно пристани будет равна 20 + 5 = 25 километров в час.

До недавнего времени физики были уверены, что такой способ сложения абсолютно правилен и пригоден для нахождения суммы любых скоростей. Но принцип относительности не оставил и этого правила механики нетронутым.

Попробуйте, например, сложить скорости в 230 и 270 тысяч километров в секунду. Что получится? 500 тысяч километров в секунду. А такой скорости существовать не может, поскольку 300 тысяч километров в секунду - наибольшая скорость в мире. Отсюда ясно по крайней мере то, что сумма каких угодно и скольких угодно скоростей во всяком случае не может превышать 300 тысяч километров в секунду.

Но, быть может, допустимо складывать арифметически меньшие скорости, например, в 150 и 130 тысяч километров в секунду? Ведь их сумма, 280 тысяч километров в секунду, не превосходит предельную скорость в мире.

Нетрудно убедиться, что и здесь арифметическая сумма неверна. Пусть, например, со скоростью в 150 тысяч километров в секунду движется мимо пристани пароход, а со скоростью в 130 тысяч километров в секунду катится по палубе парохода шар. Сумма этих скоростей должна выражать скорость шара относительно пристани. Однако из предыдущей главы мы знаем, что движущееся тело сокращается в своих размерах. Поэтому расстояние в 130 тысяч километров на пароходе вовсе не равно 130 тысяч километров для наблюдателя на пристани, а 150 тысяч километров по берегу вовсе не равны 150 тысяч километров для пассажира на пароходе.

Далее, для определения скорости шара относительно пристани наблюдатель пользуется часами на пристани. Но скорость шара на пароходе определяется по пароходному времени. А время на движущемся пароходе и на пристани, как мы знаем, совсем не одно и то же.

Так выглядит вопрос сложения скоростей на деле: приходится учитывать относительность и расстояний и времени. Как же все-таки следует складывать скорости?

Эйнштейн дал для этого особую формулу, соответствующую принципу относительности. До сих пор мы не приводили формул из теории относительности, не желая обременять ими эту трудную статью. Однако краткий и четкий язык математики делает многое сразу ясным, заменяя собой длинные рассуждения с большим количеством слов. Формула же сложения скоростей не только намного проще всех предыдущих рассуждений, но и сама по себе настолько проста и интересна, что ее стоит привести:


V 1 + V 2
W = _________________
V 1 x V 2
1+ ___________
C 2

Здесь V 1 и V 2 - слагаемые скорости, W - суммарная скорость, c - наибольшая скорость в мире (скорость света), равная 300 тысяч километров в секунду.

Эта замечательная формула обладает как раз нужным свойством: какие бы скорости мы по ней ни складывали, никогда не получится более 300 тысяч километров в секунду. Попробуйте сложить по этой формуле 230 тысяч и 270 тысяч километров в секунду или даже 300 тысяч и 300 тысяч километров в секунду и посмотрите, что получится.

При сложении же небольших скоростей - таких, с какими мы в большинстве случаев сталкиваемся на практике, - формула дает привычный нам результат, мало отличающийся от арифметической суммы. Возьмем для примера даже наибольшие современные скорости передвижения. Пусть два самолета движутся навстречу друг другу, пролетая в час по 650 километров каждый. Какова скорость их сближения?

Арифметически - (650 + 650) = 1300 километров в час. По формуле же Эйнштейна - всего на 0,72 микрона в час меньше. А в приведенном выше примере с медленно движущимся кораблем, по палубе которого идет человек, эта разница еще в 340 тысяч раз меньше.

Обнаружить подобные величины в таких случаях путем измерений невозможно. Да и практическое значение их равно нулю. Отсюда ясно, почему человек в течение тысячелетий не замечал, что арифметическое сложение скоростей принципиально неверно: неточность при таком сложении намного меньше самых строгих требований практики. И поэтому в технике все всегда сходилось с расчетами, если только расчеты бывали верны.

Но складывать арифметически скорости, сравнимые со скоростью света, уже нельзя: здесь мы можем впасть в грубые ошибки. Например, при скоростях в 36 тысяч километров в секунду ошибка превзойдет 1 тысячу километров, а при 100 тысячах километров в секунду она достигнет уже 20 тысяч километров в секунду.

То, что арифметическое сложение скоростей неправильно, а формула Эйнштейна верна, подтверждается опытом. Иначе и не могло быть: ведь именно опыт заставил физиков пересмотреть старые понятия в механике и привел их к принципу относительности.

Зная, как надо в действительности складывать скорости, мы можем теперь понять «загадочные» результаты эксперимента Майклсона. Производя этот эксперимент тогда, когда Земля двигалась навстречу лучу света со скоростью 30 километров в секунду, Майклсон ожидал получить результат в 300 000 + 30 = 300 030 километров в секунду.

Но ведь так складывать скорости нельзя!

Подставьте в формулу сложения скоростей V 1 = с (с - скорость света) и V 2 = 30, и вы найдете, что суммарная скорость равна только с1, а не больше. Как раз таким и был результат опыта Майклсона.

Тот же самый результат получится и при всех других значениях V 2 , если только V 1 равно скорости света. Пусть Земля проходит в секунду любое число километров: 30 - вокруг Солнца, 275 - вместе с солнечной системой и тысячи километров - со всей Галактикой. Дела это не меняет. Во всех случаях сложения скорости Земли со скоростью света формула даст одну и ту же величину с.

Итак, результаты эксперимента Майклсона удивляли нас только потому, что мы не умели правильно складывать скорости. Не умели же мы этого делать, так как не знали, что тела сокращаются в направлении своего движения и что в различных лабораториях время протекает по-разному.

Масса и энергия

Осталось рассмотреть последний вопрос.

Одно из наиболее важных свойств всякого тела - это его масса. Мы привыкли считать, что она всегда остается неизменной. Но расчеты, основанные на принципе относительности, показывают другое: при движении тела его масса увеличивается. Она возрастает во столько раз, во сколько уменьшается длина тела. Таким образом, масса поезда Эйнштейна, движущегося со скоростью 240 тысяч километров в секунду, в 10/6 раза больше, чем масса покоящегося.

По мере приближения скорости к пределу масса растет все быстрее и быстрее. При предельной скорости масса любого тела должна стать бесконечно большой. Обычные же скорости, с которыми мы сталкиваемся на практике, вызывают совершенно ничтожный рост массы.

Однако проверить это явление на опыте все же возможно: современная экспериментальная физика в состоянии сравнивать массу быстро движущихся электронов с массой покоящихся. И опыт полностью подтверждает закон зависимости массы от скорости.

Но, для того чтобы сообщать телам скорость, необходимо затратить энергию. И вот оказывается, что вообще всякая работа произведенная над телом, всякое увеличение энергии тела влечет за собой рост массы, пропорциональный этой затраченной энергии. Поэтому масса нагретого тела больше, чем холодного, масса сжатой пружины больше, чем свободной.

Ничтожным количествам единиц массы соответствуют огромные количества единиц энергии. Например, для увеличения массы какого-либо тела всего на 1 грамм надо произвести над ним работу в 25 млн. киловатт-часов. Иначе говоря, масса 25 млн. киловатт-часов электрической энергии равна 1 грамму. Чтобы получить этот грамм, требуется вся энергия, вырабатываемая Днепрогэсом в течение двух суток. Считая всего по одной копейке за киловатт-час, найдем, что 1 грамм самой дешевой электрической энергии стоит 250 тысяч рублей. А если превратить электроэнергию в свет, то 1 грамм света обойдется примерно в 10 млн. рублей. Это во много раз дороже самого дорогого вещества - радия.

Если сжечь в закрытом помещении 1 тонну угля, то продукты горения будут весить после их охлаждения всего на 1/3000 долю грамма меньше, чем уголь и кислород, из которых они образовались. Недостающая доля массы потеряна излучением тепла. А нагревание 1 тонны воды от 0 до 100 градусов повлечет за собой увеличение ее массы менее чем на 5/1 000 000 долей грамма.

Вполне понятно, что подобные ничтожные изменения массы тел при потери или приобретении ими энергии ускользают от самых точных измерений. Однако современной физике известны явления, при которых изменение массы становится заметным. Это процессы, происходящие при столкновении атомных ядер, когда из ядер одних элементов образуются ядра других элементов.

Например, при столкновении ядра атома лития с ядром атома водорода образуются два ядра атома гелия. Масса этих двух ядер уже на значительную величину - на 1/4 часть - меньше общей массы ядер водорода и лития. Следовательно, при превращении 1 грамма смеси лития и водорода в гелий должна выделиться 1/400 доля грамма энергии, что составит в киловатт-часах:

25 000 000/ 400 = 62,5 тысяч киловатт-часов.

Таким образом, если бы мы могли легко осуществлять ядерные превращения, мы стали бы обладателями богатейшего источника энергии: чтобы получить мощность Днепрогэса, достаточно было бы ежечасно превращать в гелий всего 4 грамма смеси лития и водорода.

Новая и старая физика

На этом заканчивается наше беглое ознакомление с принципом относительности.

Мы видели, какие серьезные и глубокие изменения внес принцип относительности в мировоззрение, сложившееся у человечества в течение многих веков. Не означает ли это, что старые представления полностью разрушены? Что они должны быть целиком отвергнуты? Что всю физику, созданную до открытия принципа относительности, следует зачеркнуть как неверную?

Нет, поскольку расхождение между старой физикой (ее называют «классической») и физикой, учитывающей принцип относительности (»релятивистской», от латинского слова «реляцио», что значит «отнесение»), слишком ничтожно почти во всех областях нашей практической деятельности.

Если бы, например, пассажир обыкновенного, хотя бы и самого быстроходного поезда (но, конечно, не поезда Эйнштейна) вздумал ввести поправку времени на принцип относительности, его подняли бы на смех. За сутки такая поправка выразилась бы в десятимиллиардных долях секунды. Тряска поезда и неточная работа самого лучшего часового механизма несравненно сильнее влияют на показания часов.

Инженер, который ввел бы в расчеты увеличение массы воды при ее нагревании, мог бы быть назван сумасшедшим. Зато физик, изучающих столкновение атомных ядер, но не учитывающий возможных при этом изменений массы, должен быть изгнан из лаборатории за невежество.

Конструкторы всегда будут проектировать машины, пользуясь законами классической физики: поправки на принцип относительности окажут на машины меньшее влияние, чем севший на маховик микроб. Но физик, наблюдающий за быстрыми электронами, обязан учитывать изменение их массы в зависимости от скорости.

Итак, законы природы, открытые до возникновения принципа относительности, не отменяются; теория относительности не опровергает, а только углубляет и уточняет знания, добытые старой наукой. Она устанавливает границы, в пределах которых можно этими знаниями пользоваться, не совершая ошибок.

В заключение надо сказать, что теория относительности не ограничивается вопросами, которые мы рассмотрели в этой статье. Продолжая разработку своего учения, Эйнштейн дал в дальнейшем совершенно новую картину такого важнейшего явления, как всемирное тяготение. В связи с этим учение об относительности было разбито на две части. Первая из них, не касающаяся тяготения, была названа «частным», или «специальным», «принципом относительности»; вторая же часть, охватывающая вопросы тяготения, - «общим принципом относительности». Таким образом, мы познакомились только с частным принципом (рассмотрение общего принципа не входило в задачу этой статьи).

Остается только отметить, что при достаточно глубоком изучении физики все лабиринты сложного здания теории относительности становятся совершенно ясными. Но проникнуть в них, как мы знаем, было далеко не просто. Для этого нужна была гениальная догадка: надо было суметь сделать из эксперимента Майклсона правильные выводы - открыть относительность времени со всеми вытекающими отсюда следствиями.

Так человечество в своем вечном стремлении шире и глубже познать мир одержало одну из своих крупнейших побед.

Оно обязано ею гению Альберта Эйнштейна.

Говорят, что прозрение пришло к Альберту Эйнштейну в одно мгновение. Ученый якобы ехал на трамвае по Берну (Швейцария), взглянул на уличные часы и внезапно осознал, что если бы трамвай сейчас разогнался до скорости света, то в его восприятии эти часы остановились бы — и времени бы вокруг не стало. Это и привело его к формулировке одного из центральных постулатов относительности — что различные наблюдатели по-разному воспринимают действительность, включая столь фундаментальные величины, как расстояние и время.

Говоря научным языком, в тот день Эйнштейн осознал, что описание любого физического события или явления зависит от системы отсчета , в которой находится наблюдатель. Если пассажирка трамвая, например, уронит очки, то для нее они упадут вертикально вниз, а для пешехода, стоящего на улице, очки будут падать по параболе, поскольку трамвай движется, в то время как очки падают. У каждого своя система отсчета.

Но хотя описания событий при переходе из одной системы отсчета в другую меняются, есть и универсальные вещи, остающиеся неизменными. Если вместо описания падения очков задаться вопросом о законе природы, вызывающем их падение, то ответ на него будет один и тот же и для наблюдателя в неподвижной системе координат, и для наблюдателя в движущейся системе координат. Закон распределенного движения в равной мере действует и на улице, и в трамвае. Иными словами, в то время как описание событий зависит от наблюдателя, законы природы от него не зависят, то есть, как принято говорить на научном языке, являются инвариантными. В этом и заключается принцип относительности .

Как любую гипотезу, принцип относительности нужно было проверить путем соотнесения его с реальными природными явлениями. Из принципа относительности Эйнштейн вывел две отдельные (хотя и родственные) теории. Специальная, или частная, теория относительности исходит из положения, что законы природы одни и те же для всех систем отсчета, движущихся с постоянной скоростью. Общая теория относительности распространяет этот принцип на любые системы отсчета, включая те, что движутся с ускорением. Специальная теория относительности была опубликована в 1905 году, а более сложная с точки зрения математического аппарата общая теория относительности была завершена Эйнштейном к 1916 году.

Специальная теория относительности

Большинство парадоксальных и противоречащих интуитивным представлениям о мире эффектов, возникающих при движении со скоростью, близкой к скорости света, предсказывается именно специальной теорией относительности. Самый известный из них — эффект замедления хода часов, или эффект замедления времени. Часы, движущиеся относительно наблюдателя, идут для него медленнее, чем точно такие же часы у него в руках.

Время в системе координат, движущейся со скоростями, близкими к скорости света, относительно наблюдателя растягивается, а пространственная протяженность (длина) объектов вдоль оси направления движения — напротив, сжимается. Этот эффект, известный как сокращение Лоренца—Фицджеральда , был описан в 1889 году ирландским физиком Джорджем Фицджеральдом (George Fitzgerald, 1851-1901) и дополнен в 1892 году нидерландцем Хендриком Лоренцем (Hendrick Lorentz, 1853-1928). Сокращение Лоренца—Фицджеральда объясняет, почему опыт Майкельсона—Морли по определению скорости движения Земли в космическом пространстве посредством замеров «эфирного ветра» дал отрицательный результат. Позже Эйнштейн включил эти уравнения в специальную теорию относительности и дополнил их аналогичной формулой преобразования для массы, согласно которой масса тела также увеличивается по мере приближения скорости тела к скорости света. Так, при скорости 260 000 км/с (87% от скорости света) масса объекта с точки зрения наблюдателя, находящегося в покоящейся системе отсчета, удвоится.

Со времени Эйнштейна все эти предсказания, сколь бы противоречащими здравому смыслу они ни казались, находят полное и прямое экспериментальное подтверждение. В одном из самых показательных опытов ученые Мичиганского университета поместили сверхточные атомные часы на борт авиалайнера, совершавшего регулярные трансатлантические рейсы, и после каждого его возвращения в аэропорт приписки сверяли их показания с контрольными часами. Выяснилось, что часы на самолете постепенно отставали от контрольных все больше и больше (если так можно выразиться, когда речь идет о долях секунды). Последние полвека ученые исследуют элементарные частицы на огромных аппаратных комплексах, которые называются ускорителями. В них пучки заряженных субатомных частиц (таких как протоны и электроны) разгоняются до скоростей, близких к скорости света, затем ими обстреливаются различные ядерные мишени. В таких опытах на ускорителях приходится учитывать увеличение массы разгоняемых частиц — иначе результаты эксперимента попросту не будут поддаваться разумной интерпретации. И в этом смысле специальная теория относительности давно перешла из разряда гипотетических теорий в область инструментов прикладной инженерии, где используется наравне с законами механики Ньютона.

Возвращаясь к законам Ньютона, я хотел бы особо отметить, что специальная теория относительности, хотя она внешне и противоречит законам классической ньютоновской механики, на самом деле практически в точности воспроизводит все обычные уравнения законов Ньютона, если ее применить для описания тел, движущихся со скоростью значительно меньше, чем скорость света. То есть, специальная теория относительности не отменяет ньютоновской физики, а расширяет и дополняет ее.

Принцип относительности помогает также понять, почему именно скорость света, а не какая-нибудь другая, играет столь важную роль в этой модели строения мира — этот вопрос задают многие из тех, кто впервые столкнулся с теорией относительности. Скорость света выделяется и играет особую роль универсальной константы, потому что она определена естественнонаучным законом. В силу принципа относительности скорость света в вакууме c одинакова в любой системе отсчета. Это, казалось бы, противоречит здравому смыслу, поскольку получается, что свет от движущегося источника (с какой бы скоростью он ни двигался) и от неподвижного доходит до наблюдателя одновременно. Однако это так.

Благодаря своей особой роли в законах природы скорость света занимает центральное место и в общей теории относительности.

Общая теория относительности

Общая теория относительности применяется уже ко всем системам отсчета (а не только к движущимися с постоянной скоростью друг относительно друга) и выглядит математически гораздо сложнее, чем специальная (чем и объясняется разрыв в одиннадцать лет между их публикацией). Она включает в себя как частный случай специальную теорию относительности (и, следовательно, законы Ньютона). При этом общая теория относительности идёт значительно дальше всех своих предшественниц. В частности, она дает новую интерпретацию гравитации.

Общая теория относительности делает мир четырехмерным: к трем пространственным измерениям добавляется время. Все четыре измерения неразрывны, поэтому речь идет уже не о пространственном расстоянии между двумя объектами, как это имеет место в трехмерном мире, а о пространственно-временных интервалах между событиями, которые объединяют их удаленность друг от друга — как по времени, так и в пространстве. То есть пространство и время рассматриваются как четырехмерный пространственно-временной континуум или, попросту, пространство-время . В этом континууме наблюдатели, движущиеся друг относительно друга, могут расходиться даже во мнении о том, произошли ли два события одновременно — или одно предшествовало другому. К счастью для нашего бедного разума, до нарушения причинно-следственных связей дело не доходит — то есть существования систем координат, в которых два события происходят не одновременно и в разной последовательности, даже общая теория относительности не допускает.


Закон всемирного тяготения Ньютона говорит нам, что между любыми двумя телами во Вселенной существует сила взаимного притяжения. С этой точки зрения Земля вращается вокруг Солнца, поскольку между ними действуют силы взаимного притяжения. Общая теория относительности, однако, заставляет нас взглянуть на это явление иначе. Согласно этой теории, гравитация — это следствие деформации («искривления») упругой ткани пространства-времени под воздействием массы (при этом чем тяжелее тело, например Солнце, тем сильнее пространство-время «прогибается» под ним и тем, соответственно, сильнее его гравитационное поле). Представьте себе туго натянутое полотно (своего рода батут), на которое помещен массивный шар. Полотно деформируется под тяжестью шара, и вокруг него образуется впадина в форме воронки. Согласно общей теории относительности, Земля обращается вокруг Солнца подобно маленькому шарику, пущенному кататься вокруг конуса воронки, образованной в результате «продавливания» пространства-времени тяжелым шаром — Солнцем. А то, что нам кажется силой тяжести, на самом деле является, по сути чисто внешнем проявлением искривления пространства-времени, а вовсе не силой в ньютоновском понимании. На сегодняшний день лучшего объяснения природы гравитации, чем дает нам общая теория относительности, не найдено.

Проверить общую теорию относительности трудно, поскольку в обычных лабораторных условиях ее результаты практически полностью совпадают с тем, что предсказывает закон всемирного тяготения Ньютона. Тем не менее несколько важных экспериментов были произведены, и их результаты позволяют считать теорию подтвержденной. Кроме того, общая теория относительности помогает объяснить явления, которые мы наблюдаем в космосе, — например, незначительные отклонения Меркурия от стационарной орбиты, необъяснимые с точки зрения классической механики Ньютона, или искривление электромагнитного излучения далеких звезд при его прохождении в непосредственной близости от Солнца.

На самом деле результаты, которые предсказывает общая теория относительности, заметно отличаются от результатов, предсказанных законами Ньютона, только при наличии сверхсильных гравитационных полей. Это значит, что для полноценной проверки общей теории относительности нужны либо сверхточные измерения очень массивных объектов, либо черные дыры, к которым никакие наши привычные интуитивные представления неприменимы. Так что разработка новых экспериментальных методов проверки теории относительности остается одной из важнейших задач экспериментальной физики.

ОТО и РТГ: некоторые акценты

1. В бесчисленных книгах – монографиях, учебниках и научно-популярных изданиях, а также в различного типа статьях – читатели привыкли видеть упоминания об общей теории относительности (ОТО) как об одном из величайших достижений нашего века, о замечательной теории, о непременном орудии современной физики и астрономии. Между тем из статьи А. А. Логунова они узнают, что, по его мнению, от ОТО нужно отказаться, что она плоха, непоследовательна и противоречива. Поэтому ОТО требует замены некоторой другой теорией и, конкретно, построенной А. А. Логуновым и его сотрудниками релятивистской теорией гравитации (РТГ).

Возможна ли такая ситуация, когда очень многие ошибаются в оценке ОТО, существующей и изучаемой уже более 70 лет, а лишь несколько человек во главе с А. А. Логуновым действительно выяснили, что ОТО нужно отбросить? Большинство читателей ожидают, вероятно, ответа: такое невозможно. На самом же деле я могу ответить только прямо противоположным образом: и «такое» в принципе возможно, ибо речь идет не о религии, а о науке.

Основатели и пророки различных религий и вероучений создавали и создают свои «священные книги», содержание которых объявляется истиной в последней инстанции. Если кто-то засомневался, тем хуже для него, он становится еретиком с вытекающими отсюда последствиями, нередко даже кровавыми. А лучше вообще не думать, а верить, следуя известной формуле одного из церковных деятелей: «Верую, ибо нелепо». Научное мировоззрение в корне противоположно: оно требует ничего не принимать на веру, позволяет сомневаться во всем, не признает догм. Под влиянием новых фактов и соображений не только можно, но и нужно, если это оправданно, изменять свою точку зрения, заменять несовершенную теорию более совершенной или, скажем, как-то обобщать старую теорию. Аналогична ситуация и в отношении личностей. Основатели вероучений считаются непогрешимыми, и, например, у католиков даже живой человек – «царствующий» папа римский – объявлен непогрешимым. Наука не знает непогрешимых. Большое, иногда даже исключительное, уважение, которое физики (буду для определенности говорить о физиках) испытывают к великим представителям их профессии, особенно к таким титанам, как Исаак Ньютон и Альберт Эйнштейн, не имеет ничего общего с канонизацией святых, с обожествлением. И великие физики – люди, а у всех людей есть свои слабости. Если же говорить о науке, которая нас здесь только и интересует, то и самые великие физики далеко не всегда и не во всем были правы, почтение к ним и признание их заслуг основано не на непогрешимости, а на том, что им удавалось обогатить науку замечательными достижениями, видеть дальше и глубже их современников.


2. Теперь необходимо остановиться на требованиях, предъявляемых к фундаментальным физическим теориям. Во-первых, такая теория должна быть полной в области ее применимости, или, как буду условно говорить для краткости, должна быть последовательной. Во-вторых, физическая теория должна быть адекватна физической реальности, или, проще говоря, согласовываться с опытами и наблюдениями. Можно было бы упомянуть и другие требования, в первую очередь соблюдение законов и правил математики, но всё это подразумевается.

Поясним сказанное на примере классической, нерелятивистской механики – механики Ньютона в применении к простейшей в принципе задаче о движении некоторой «точечной» частицы. Как известно, роль такой частицы в задачах небесной механики может играть целая планета или ее спутник. Пусть в момент t 0 частица находится в точке A с координатами x iA (t 0 ) и имеет скорость v iA (t 0 ) (здесь i = l, 2, 3, ибо положение точки в пространстве характеризуется тремя координатами, а скорость является вектором). Тогда, если известны все действующие на частицу силы, законы механики позволяют определить положение B и скорость частицы v i в любой последующий момент времени t , то есть найти вполне определенные величины x iB (t ) и v iB (t ). А что было бы, если бы используемые законы механики не давали однозначного ответа и, скажем, в нашем примере предсказывали, что частица в момент t может находиться либо в точке B , либо в совсем другой точке C ? Ясно, что такая классическая (неквантовая) теория была бы неполна, или, по упомянутой терминологии, непоследовательна. Ее либо нужно было бы дополнить, сделав однозначной, либо вообще отбросить. Механика Ньютона, как сказано, последовательна – на находящиеся в области ее компетенции и применимости вопросы она дает однозначные и вполне определенные ответы. Удовлетворяет механика Ньютона и второму упомянутому требованию – получаемые на ее основе результаты (и, конкретно, значения координат x i (t ) и скорости v i (t )) согласуются с наблюдениями и опытами. Именно поэтому вся небесная механика – описание движения планет и их спутников – до поры до времени целиком базировалась, и с полным успехом, на ньютоновской механике.

3. Но вот в 1859 году Леверье обнаружил, что движение самой близкой к Солнцу планеты – Меркурия несколько отличается от предсказываемого механикой Ньютона. Конкретно оказалось, что, перигелий – ближайшая к Солнцу точка эллиптической орбиты планеты – поворачивается с угловой скоростью на 43 угловых секунды в столетие , отличающейся от той, которую следовало бы ожидать при учете всех известных возмущений от других планет и их спутников. Еще ранее Леверье и Адамс столкнулись с аналогичной, по сути дела, ситуацией при анализе движения Урана – наиболее удаленной от Солнца планеты из всех известных в то время. И они нашли объяснение расхождению вычислений с наблюдениями, предположив, что на движение Урана оказывает влияние еще более удаленная планета, названная Нептуном. В 1846 году Нептун действительно был обнаружен на предсказанном месте, и это событие заслуженно считается триумфом ньютоновской механики. Довольно естественно, что Леверье попытался объяснить и упомянутую аномалию в движении Меркурия существованием еще неизвестной планеты – в данном случае некоей планеты Вулкан, движущейся еще ближе к Солнцу. Но во второй раз «фокус не удался» – никакого Вулкана не существует. Тогда начали пытаться изменять ньютоновский закон всемирного тяготения, согласно которому гравитационная сила в применении к системе Солнце – планета изменяется по закону

где ε – некоторая небольшая величина. Кстати сказать, аналогичный прием используется (правда, без успеха) и в наши дни для объяснения некоторых неясных вопросов астрономии (речь идет о проблеме скрытой массы; см. например, цитируемую ниже книгу автора «О физике и астрофизике», с. 148). Но чтобы гипотеза переросла в теорию, нужно исходить из каких-то принципов, указать значение параметра ε, построить последовательную теоретическую схему. Этого никому не удалось, и вопрос о повороте перигелия Меркурия оставался открытым вплоть до 1915 года. Именно тогда, в разгар первой мировой войны, когда лишь столь немногих интересовали абстрактные проблемы физики и астрономии, Эйнштейн завершил (после примерно 8 лет напряженных усилий) создание общей теории относительности. Освещен этот последний этап в построении фундамента ОТО был в трех коротких статьях, доложенных и написанных в ноябре 1915 года. Во второй из них, доложенной 11 ноября, Эйнштейн на основании ОТО вычислил дополнительный по сравнению с ньютоновским поворот перигелия Меркурия, который оказался равным (в радианах за один оборот планеты вокруг Солнца)

и c = 3·10 10 см · с –1 – скорость света. При переходе к последнему выражению (1) использован третий закон Кеплера

a 3 = GM T 2
4π 2

где T – период обращения планеты. Если в формулу (1) подставить лучшие известные сейчас значения всех величин, а также произвести элементарный пересчет от радианов за оборот к повороту в угловых секундах (знак ″) за столетие, то придем к значению Ψ = 42″.98 / столетие. Наблюдения сходятся с этим результатом с достигнутой сейчас точностью около ± 0″.1 / столетие (Эйнштейн в своей первой работе использовал менее точные данные, но в пределах ошибок получил полное согласие теории с наблюдениями). Формула (1) приведена выше, во-первых, чтобы стала ясна ее простота, столь часто отсутствующая в математически сложных физических теориях, в том числе во многих случаях и в ОТО. Во-вторых, и это главное, из (1) ясно, что поворот перигелия следует из ОТО без необходимости привлекать какие-либо новые неизвестные постоянные или параметры. Поэтому полученный Эйнштейном результат стал подлинным триумфом ОТО.

В лучшей из мне известных биографий Эйнштейна высказывается и обосновывается мнение, что объяснение поворота перигелия Меркурия явилось «самым сильным эмоциональным событием за всю научную жизнь Эйнштейна, а быть может, и за всю его жизнь». Да, это был «звездный час» Эйнштейна. Но именно для него самого. По ряду причин (достаточно упомянуть о войне) для самой ОТО для выхода на мировую арену как этой теории, так и ее создателя «звездным часом» стало другое событие, происшедшее 4 года спустя – в 1919 г. Дело в том, что в той же работе, в которой была получена формула (1), Эйнштейн сделал важное предсказание: лучи света, проходящие вблизи Солнца, обязаны искривляться, причем их отклонение должно составлять

α = 4GM = 1″.75 r ,
c 2 r r
(2)

где r – ближайшее расстояние между лучом и центром Солнца, а r ☼ = 6.96·10 10 см – радиус Солнца (точнее, радиус солнечной фотосферы); таким образом, максимальное отклонение, которое можно наблюдать, составляет 1.75 угловых секунды. Как ни мал такой угол (примерно под таким углом взрослый человек виден с расстояния в 200 км), он мог быть измерен уже в то время оптическим методом путем фотографирования звезд на небе в окрестности Солнца . Именно такие наблюдения были произведены двумя английскими экспедициями во время полного солнечного затмения 29 мая 1919 года. Эффект отклонения лучей в поле Солнца был при этом установлен со всей определенностью и находится в согласии с формулой (2), хотя точность измерений в связи с малостью эффекта была невелика. Однако отклонение вдвое меньшее, чем согласно (2), т. е. на 0″.87, было исключено. Последнее весьма важно, ибо отклонение на 0″.87 (при r = r ☼) можно получить уже из ньютоновской теории (сама возможность отклонения света в поле тяжести была отмечена еще Ньютоном, а выражение для угла отклонения, вдвое меньшее, чем согласно формуле (2), было получено в 1801 году; другое дело, что это предсказание было забыто и Эйнштейн о нём не знал). 6 ноября 1919 года результаты экспедиций были доложены в Лондоне на совместном заседании Королевского общества и Королевского астрономического общества. Какое они произвели впечатление, ясно из того, что сказал на этом заседании председательствовавший Дж. Дж. Томсон: «Это самый важный результат, полученный в связи с теорией гравитации со времен Ньютона… Он представляет собой одно из величайших достижений человеческой мысли».

Эффекты ОТО в Солнечной системе, как мы видели, весьма малы. Объясняется это тем, что гравитационное поле Солнца (не говоря уже о планетах) является слабым. Последнее означает, что ньютоновский гравитационный потенциал Солнца

Напомним теперь результат, известный из школьного курса физики: для круговых орбит планет |φ ☼ | = v 2 , где v – скорость планеты. Поэтому слабость гравитационного поля можно характеризовать более наглядным параметром v 2 /c 2 , который для Солнечной системы, как мы видели, не превосходит значения 2,12 ·10 – 6 . На земной орбите v = 3 ·10 6 см·с – 1 и v 2 /c 2 = 10 – 8 , для близких спутников Земли v ~ 8 ·10 5 см·с – 1 и v 2 /c 2 ~ 7 ·10 – 10 . Следовательно, проверка упомянутых эффектов ОТО даже с достигнутой сейчас точностью 0.1 %, то есть с погрешностью, не превосходящей 10 – 3 от измеряемой величины (скажем, отклонения световых лучей в поле Солнца), еще не позволяет всесторонне проверить ОТО с точностью до членов порядка

Об измерениях с нужной точностью, скажем, отклонения лучей в пределах Солнечной системы можно пока только мечтать. Впрочем, проекты соответствующих экспериментов уже обсуждаются. В связи со сказанным физики и говорят, что ОТО проверена в основном лишь для слабого гравитационного поля. Но мы (я, во всяком случае) как-то даже довольно долго не замечали одного важного обстоятельства. Именно после запуска 4 октября 1957 года первого спутника Земли космическая навигация начала быстро развиваться. Для посадки приборов на Марс и Венеру, при пролете вблизи Фобоса и т. п. нужны уже расчеты с точностями до метров (при расстояниях от Земли порядка ста миллиардов метров), когда эффекты ОТО вполне существенны. Поэтому расчеты сейчас ведутся уже на основе вычислительных схем, органически учитывающих ОТО. Вспоминаю, как несколько лет назад один докладчик – специалист по космической навигации – даже не понимал моих вопросов о точности проверки ОТО. Он отвечал: мы же учитываем ОТО в наших инженерных расчетах, иначе и работать нельзя, все получается правильно, чего же еще желать? Желать, конечно, можно многого, но забывать, что ОТО уже не абстрактная теория, а используется при «инженерных расчетах», тоже не следует.

4. В свете всего изложенного критика ОТО А. А. Логуновым представляется особенно удивительной. Но в согласии со сказанным в начале настоящей статьи отметать эту критику без анализа нельзя. Еще в большей степени нельзя без детального анализа высказать суждение о предлагаемой А. А. Логуновым РТГ – релятивистской теории гравитации.

К сожалению, на страницах научно-популярных изданий проводить такой анализ совершенно невозможно. В своей статье А. А. Логунов, по сути дела, лишь декларирует и комментирует свою позицию. Никак иначе не могу поступить здесь и я.

Так вот, мы считаем, что ОТО является последовательной физической теорией – на все правильно и четко поставленные вопросы, допустимые в области ее применимости, ОТО дает однозначный ответ (последнее относится, в частности, к времени запаздывания сигналов при локации планет). Не страдает ОТО и какими-либо дефектами математического или логического характера . Нужно, правда, пояснить, что выше имеется в виду при употреблении местоимения «мы». «Мы» – это, конечно, и я сам, но также и все те советские и иностранные физики, с которыми мне приходилось обсуждать ОТО, а в ряде случаев и ее критику А. А. Логуновым. Великий Галилей еще четыре столетия тому назад говорил: в вопросах науки мнение одного бывает дороже мнения тысячи. Другими словами, большинством голосов научные споры не решаются. Но, с другой стороны, совершенно очевидно, что мнение многих физиков, вообще говоря, значительно убедительнее, или, лучше сказать, надежнее и весомее, мнения одного физика. Поэтому переход от «я» к «мы» имеет здесь важное значение.

Полезно и уместно будет, надеюсь, сделать еще несколько замечаний.

Почему А. А. Логунову так не нравится ОТО? Главная причина состоит в том, что в ОТО, вообще говоря, нет понятия об энергии и импульсе в привычной нам из электродинамики форме и, говоря его словами, имеет место отказ «от представления гравитационного поля как классического поля типа Фарадея-Максвелла, обладающего хорошо определенной плотностью энергии-импульса». Да, последнее в некотором смысле верно, но объясняется тем, что «в римановой геометрии в общем случае нет нужной симметрии относительно сдвигов и поворотов, то есть нет… группы движения пространства-времени». Геометрия же пространства-времени согласно ОТО – это риманова геометрия. Именно поэтому, в частности, лучи света отклоняются от прямой линии, проходя вблизи Солнца.

Одним из крупнейших достижений математики прошлого века стало создание и развитие Лобачевским, Бойяи, Гауссом, Риманом и их последователями неевклидовой геометрии. Тогда же возник вопрос: какова на самом деле геометрия физического пространства-времени, в которой мы живем? Как сказано, согласно ОТО эта геометрия неевклидова, риманова, а не псевдоевклидова геометрия Минковского (об этой геометрии подробнее рассказано в статье А. А. Логунова). Эта геометрия Минковского явилась, можно сказать, порождением специальной теории относительности (СТО) и пришла на смену абсолютному времени и абсолютному пространству Ньютона. Последнее непосредственно до создания СТО в 1905 году пытались отождествить с неподвижным эфиром Лоренца. Но от лоренцова эфира, как от абсолютно неподвижной механической среды, потому-то и отказались, что все попытки заметить присутствие этой среды не увенчались успехом (я имею в виду опыт Майкельсона и некоторые другие эксперименты). Гипотеза о том, что физическое пространство-время обязательно в точности пространство Минковского, которую принимает А. А. Логунов в качестве основополагающей, является очень далеко идущей. Она в некотором смысле аналогична гипотезам об абсолютном пространстве и о механическом эфире и, как нам представляется, остается и останется совершенно не обоснованной до тех пор, пока в ее пользу не будут указаны какие-либо аргументы, основанные на наблюдениях и опытах. А такие аргументы, по крайней мере в настоящее время, полностью отсутствуют. Ссылки же на аналогию с электродинамикой и идеалы замечательных физиков прошлого века Фарадея и Максвелла никакой убедительностью в этом отношении не обладают.

5. Если говорить о различии между электромагнитным полем и, следовательно, электродинамикой и гравитационным полем (ОТО представляет собой как раз теорию такого поля), то необходимо отметить следующее. Выбором системы отсчета уничтожить (обратить в нуль) даже локально (в малой области) все электромагнитное поле невозможно. Поэтому если плотность энергии электромагнитного поля

W = E 2 + H 2

(E и H – напряженности соответственно электрического и магнитного полей) отлична от нуля в какой-нибудь системе отсчета, то она будет отлична от нуля и в любой другой системе отсчета. Гравитационное же поле, грубо говоря, значительно сильнее зависит от выбора системы отсчета. Так, однородное и постоянное гравитационное поле (то есть поле тяжести, вызывающее ускорение g помещенных в него частиц, не зависящее от координат и времени) можно полностью «уничтожить» (обратить в нуль) переходом к равномерно-ускоренной системе отсчета. Это обстоятельство, составляющее основное физическое содержание «принципа эквивалентности», было впервые отмечено Эйнштейном в статье, опубликованной в 1907 году и явившейся первой на пути создания ОТО .

Если гравитационное поле отсутствует (в частности, вызываемое им ускорение g равно нулю), то равна нулю и плотность отвечающей ему энергии. Отсюда ясно, что в вопросе о плотности энергии (и импульса) теория гравитационного поля должна радикально отличаться от теории электромагнитного поля. Такое утверждение не изменяется в связи с тем фактом, что в общем случае гравитационное поле не может быть «уничтожено» выбором системы отсчета.

Эйнштейн понимал это еще до 1915 года, когда завершил создание ОТО. Так, в 1911 году он писал: «Конечно, нельзя любое поле тяжести заменить состоянием движения системы без гравитационного поля, точно так же как нельзя преобразовать все точки произвольно движущейся среды к покою посредством релятивистского преобразования». А вот выдержка из статьи 1914 года: «Предварительно сделаем еще одно замечание для устранения напрашивающегося недоразумения. Сторонник обычной современной теории относительности (речь идет о СТО – В. Л. Г.) с известным правом называет «кажущейся» скорость материальной точки. Именно, он может выбрать систему отсчета так, что материальная точка имеет в рассматриваемый момент скорость, равную нулю. Если же существует система материальных точек, которые обладают разными скоростями, то он уже не может ввести такую систему отсчета, чтобы скорости всех материальных точек относительно этой системы обращались в нуль. Аналогичным образом физик, стоящий на нашей точке зрения, может называть «кажущимся» гравитационное поле, поскольку соответствующим выбором ускорения системы отсчета он может достичь того, чтобы в определенной точке пространства-времени гравитационное поле обращалось в нуль. Однако примечательно, что обращение в нуль гравитационного поля посредством преобразования в общем случае не может быть достигнуто для протяженных гравитационных полей. Например, гравитационное поле Земли нельзя сделать равным нулю посредством выбора подходящей системы отсчета». Наконец, уже в 1916 г., отвечая на критику ОТО, Эйнштейн еще раз подчеркивал то же самое: «Никоим образом нельзя также утверждать, что поле тяжести в какой-либо мере объясняется чисто кинематически: "кинематическое, нединамическое понимание гравитации" невозможно. Мы не можем получить любое гравитационное поле посредством простого ускорения одной галилеевой системы координат относительно другой, поскольку таким путем возможно получить поля только определенной структуры, которые, однако, должны подчиняться тем же законам, что и все другие гравитационные поля. Это еще одна формулировка принципа эквивалентности (специально для применения этого принципа к гравитации)».

Невозможность «кинематического понимания» гравитации в сочетании с принципом эквивалентности и обусловливают переход в ОТО от псевдоевклидовой геометрии Минковского к римановой геометрии (в этой геометрии пространство-время обладает, вообще говоря, отличной от нуля кривизной; наличие такой кривизны и отличает «истинное» гравитационное поле от «кинематического»). Физические особенности гравитационного поля обусловливают, повторим это, и радикальное изменение роли энергии и импульса в ОТО по сравнению с электродинамикой. При этом как использование римановой геометрии, так и невозможность применять привычные из электродинамики энергетические представления не препятствуют, как уже подчеркивалось выше, тому, что из ОТО следуют и могут быть вычислены вполне однозначные значений для всех наблюдаемых величин (угла отклонения световых лучей, изменения элементов орбит у планет и двойных пульсаров и т. д. и т. п.).

Нелишним будет, наверное, отметить и то обстоятельство, что ОТО можно сформулировать и в привычном из электродинамики виде с использованием понятия о плотности энергии-импульса (об этом см. цитированную статью Я. Б. Зельдовича и Л. П. Грищука . Однако вводимое при этом пространство Минковского является чисто фиктивным (ненаблюдаемым), и речь идет лишь о той же ОТО, записанной в нестандартной форме. Между тем, повторим это, А. А. Логунов считает используемое им в релятивистской теории гравитации (РТГ) пространство Минковского реальным физическим, а значит, наблюдаемым пространством.

6. В этом плане особенно важен второй из вопросов, фигурирующих в заголовке настоящей статьи: отвечает ли ОТО физической реальности? Другими словами, что говорит опыт – верховный судья при решении судьбы любой физической теории? Этой проблеме – экспериментальной проверке ОТО посвящены многочисленные статьи и книги . Вывод при этом вполне определенен – все имеющиеся данные экспериментов или наблюдений либо подтверждают ОТО, либо не противоречат ей. Однако, как мы уже указывали, проверка ОТО производилась и происходит в основном лишь в слабом гравитационном поле. Кроме того, любой эксперимент имеет ограниченную точность. В сильных гравитационных полях (грубо говоря, в случае, когда отношение |φ| / c 2 не мало; см. выше) ОТО еще в достаточно полной мере не проверена. Для этой цели можно сейчас практически использовать лишь астрономические методы, касающиеся очень далекого космоса: изучения нейтронных звезд, двойных пульсаров, «черных дыр», расширения и строения Вселенной, как говорят, «в большом» – на огромных просторах, измеряемых миллионами и миллиардами световых лет. Многое в этом направлении уже сделано и делается. Достаточно упомянуть об исследованиях двойного пульсара PSR 1913+16, для которого (как и вообще для нейтронных звезд) параметр |φ| / c 2 уже порядка 0,1. Кроме того, в этом случае удалось выявить эффект порядка (v / c ) 5 , связанный с излучением гравитационных волн. В грядущих десятилетиях открывается еще больше возможностей для исследования процессов в сильных гравитационных полях.

Путеводной звездой в этих захватывающих дух исследованиях является в первую очередь ОТО. Вместе с тем, естественно, обсуждаются и некоторые другие возможности – иные, как иногда говорят, альтернативные, теории гравитации. Например, в ОТО, как и в теории всемирного тяготения Ньютона, гравитационная постоянная G действительно считается постоянной величиной. Одной из самых известных теорий гравитации, обобщающих (или, точнее, расширяющих) ОТО, является теория, в которой гравитационная «постоянная» считается уже новой скалярной функцией – величиной, зависящей от координат и времени. Наблюдения и измерения свидетельствуют, однако, о том, что возможные относительные изменения G со временем очень малы – составляют, по-видимому, не более стамиллиардной в год, то есть |dG / dt | / G < 10 – 11 год – 1 . Но когда-то в прошлом изменения G могли бы играть роль. Отметим, что даже независимо от вопроса о непостоянстве G предположение о существовании в реальном пространстве-времени, помимо гравитационного поля g ik , также некоторого скалярного поля ψ является магистральным направлением в современной физике и космологии. В других альтернативных теориях гравитации (о них см. упомянутую выше в примечании 8 книгу К. Уилла) ОТО изменяется или обобщается иным образом. Против соответствующего анализа, конечно, нельзя возражать, ибо ОТО не догма, а физическая теория. Более того, мы знаем, что ОТО, являющаяся неквантовой теорией, заведомо нуждается в обобщении на квантовую область, которая еще недоступна известным гравитационным экспериментам. Естественно, обо всем этом здесь подробнее не расскажешь.

7. А. А. Логунов, отправляясь от критики ОТО, уже более 10 лет строит некоторую альтернативную – отличную от ОТО теорию гравитации. При этом многое изменялось в ходе работы, а принятый сейчас вариант теории (это и есть РТГ) особенно подробно изложен в статье, занимающей около 150 страниц и содержащей около 700 только пронумерованных формул. Очевидно, что детальный разбор РТГ возможен лишь на страницах научных журналов. Только после такого разбора можно будет сказать, последовательна ли РТГ, не содержит ли она математических противоречий и т. д. Насколько я мог понять, РТГ отличается от ОТО отбором лишь части решений ОТО – все решения дифференциальных уравнений РТГ удовлетворяют уравнениям ОТО, но, как утверждают авторы РТГ, не наоборот. При этом делается заключение о том, что в отношении глобальных вопросов (решений для всего пространства-времени или его больших областей, топологии и т. п.) отличия между РТГ и ОТО, вообще говоря, радикальны. Что же касается всех экспериментов и наблюдений, произведенных в пределах Солнечной системы, то, насколько я понимаю, РТГ не может вступить в противоречие с ОТО. Если это так , то предпочесть РТГ (по сравнению с ОТО) на основе известных опытов в Солнечной системе невозможно. Что же касается «черных дыр» и Вселенной, то авторы РТГ утверждают, что их выводы существенно отличны от выводов ОТО, но какие-либо конкретные данные наблюдений, свидетельствующие в пользу РТГ, нам неизвестны. В такой ситуации РТГ А. А. Логунова (если РТГ действительно отличается от ОТО по существу, а не только способом изложения и выбором одного из возможных классов координатных условий; см. статью Я. Б. Зельдовича и Л. П. Грищука) может рассматриваться лишь как одна из допустимых, в принципе, альтернативных теорий гравитации.

Некоторых читателей могут насторожить оговорки типа: «если это так», «если РТГ действительно отличается от ОТО». Не стремлюсь ли я таким образом застраховаться от ошибок? Нет, я не боюсь ошибиться уже в силу убеждения в том, что существует лишь одна гарантия безошибочности – вообще не работать, а в данном случае не обсуждать научные вопросы. Другое дело, что уважение к науке, знакомство с ее характером и историей побуждают к осторожности. Категоричность же высказываний далеко не всегда свидетельствует о наличии подлинной ясности и, в общем, не способствует установлению истины. РТГ А. А. Логунова в ее современной форме сформулирована совсем недавно и подробно еще не обсуждена в научной литературе. Поэтому, естественно, и я не имею о ней окончательного мнения. К тому же в научно-популярном журнале ряд возникающих вопросов обсуждать невозможно, да и неуместно. Вместе с тем, конечно, в связи с большим интересом читателей к теории гравитации освещение на доступном уровне этого круга вопросов, в том числе и дискуссионных, на страницах «Науки и жизни» представляется оправданным.

Итак, руководствуясь мудрым «принципом наибольшего благоприятствования», в настоящее время следует считать РТГ альтернативной теорией гравитации, нуждающейся в соответствующем анализе и обсуждении. Тем, кому эта теория (РТГ) нравится, кого она интересует, никто не мешает (и, конечно, не должен мешать) ее развивать, предлагать возможные пути экспериментальной проверки.

Вместе с тем говорить о том, что ОТО в настоящее время в чем-то поколеблена, нет никаких оснований. Более того, область применимости ОТО представляется весьма широкой, а ее точность очень высокой. Такова, по нашему мнению, объективная оценка существующего положения вещей. Если же говорить о вкусах и интуитивном отношении, а вкусы и интуиция в науке играют немалую роль, хотя и не могут выдвигаться в качестве доказательств, то здесь придется перейти от «мы» к «я». Так вот, чем больше приходилось и приходится сталкиваться с общей теорией относительности и ее критикой, тем больше у меня крепнет впечатление об ее исключительной глубине и красоте.

Действительно, как указано в выходных данных, тираж журнала «Наука и жизнь» № 4, 1987 г. был равен 3 млн. 475 тыс. экземпляров. В последние годы тираж составлял всего несколько десятков тысяч экземпляров, превысив 40 тыс. лишь в 2002 г. (прим. – А. М. Крайнев) .

Кстати сказать, в 1987 году исполняется 300 лет со дня первой публикации великой книги Ньютона «Математические начала натуральной философии». Ознакомление с историей создания этого труда, не говоря уже о нем самом, очень поучительно. Впрочем, то же относится ко всей деятельности Ньютона, с которой неспециалистам у нас не так-то легко познакомиться. Могу порекомендовать для этой цели очень хорошую книгу С. И. Вавилова «Исаак Ньютон», ее следует переиздать. Позволю себе упомянуть и о написанной по поводу ньютоновского юбилея моей статье, опубликованной в журнале «Успехи физических наук», т. 151, № 1, 1987 г., с. 119.

Приводится величина поворота по современным измерениям (у Леверье фигурировал поворот на 38 секунд). Напомним для наглядности, что Солнце и Луна видны с Земли под углом около 0.5 углового градуса – 1800 угловых секунд.

A. Pals «Subtle is the Lord…» The Science and Life of Albert Einstein. Oxford Univ. Press, 1982. Целесообразно было бы издать русский перевод этой книги.

Последнее возможно во время полных солнечных затмений; фотографируя ту же часть неба, скажем, через полгода, когда Солнце переместилось на небесной сфере, получаем для сравнения картину, не искаженную в результате отклонения лучей под влиянием гравитационного поля Солнца.

За подробностями я должен отослать к статье Я. Б. Зельдовича и Л. П. Грищука, недавно опубликованной в «Успехах физических наук» (т. 149, с. 695, 1986 г.), а также к цитированной там литературе, в частности к статье Л. Д. Фаддеева («Успехи физических наук», т. 136, с. 435, 1982 г.).

См. сноску 5.

См. К. Уилл. «Теория и эксперимент в гравитационной физике». М., Энергоиэдат, 1985; см. также В. Л. Гинзбург. О физике и астрофизике. М., Наука, 1985, и указанную там литературу.

А. А. Логунов и М. А. Мествиришвили. «Основы релятивистской теории гравитации». Журнал «Физика элементарных частиц и атомного ядра», т. 17, выпуск 1, 1986 г.

В работах А. А. Логунова имеются иные утверждения и конкретно считается, что для времени запаздывания сигнала при локации, скажем, Меркурия с Земли, из РТГ получается значение, отличное от следующего из ОТО. Точнее, утверждается, что ОТО вообще не дает однозначного предсказания времени запаздывания сигналов, то есть ОТО непоследовательна (см. выше). Однако такой вывод является, как нам представляется, плодом недоразумения (это указано, например, в цитированной статье Я. Б. Зельдовича и Л. П. Грищука, см. сноску 5): разные результаты в ОТО при использовании разных систем координат получаются лишь потому, что сравниваются лоцируемые планеты, находящиеся на различных орбитах, а потому и обладающие разными периодами обращения вокруг Солнца. Наблюдаемые с Земли времена запаздывания сигналов при локации определенной планеты, согласно ОТО и РТГ, совпадают.

См. сноску 5.

Подробности для любознательных

Отклонение света и радиоволн в гравитационном поле Солнца. Обычно в качестве идеализированной модели Солнца берут статический сферически-симметричный шар радиуса R ☼ ~ 6.96·10 10 см, масса Солнца М ☼ ~ 1.99·10 30 кг (в 332958 раз больше массы Земли). Отклонение света максимально для лучей, которые едва касаются Солнца, то есть при R ~ R ☼ , и равно: φ ≈ 1″.75 (угловых секунд). Этот угол весьма мал – примерно под таким углом виден взрослый человек с расстояния в 200 км, и поэтому точность измерения гравитационного искривления лучей до недавнего времени была невысокой. Последние оптические измерения, выполненные во время солнечного затмения 30 июня 1973 года, имели погрешность приблизительно 10 %. Сегодня благодаря появлению радиоинтерферометров «со сверхдлинной базой» (больше 1000 км) точность измерения углов резко повысилась. Радиоинтерферометры позволяют надежно измерять угловые расстояния и изменения углов величиной порядка 10 – 4 угловой секунды (~ 1 нанорадиана).

На рисунке показано отклонение только одного из лучей, приходящих от далекого источника. В действительности искривлены оба луча.

ГРАВИТАЦИОННЫЙ ПОТЕНЦИАЛ

В 1687 году появился фундаментальный труд Ньютона «Математические начала натуральной философии» (см. «Наука и жизнь» № 1, 1987 г.), в котором был сформулирован закон всемирного тяготения. Этот закон гласит, что сила притяжения между двумя любыми материальными частицами прямо пропорциональна их массам M и m и обратно пропорциональна квадрату расстояния r между ними:

F = G Mm .
r 2

Коэффициент пропорциональности G стал называться гравитационной постоянной, он необходим для согласования размерностей в правой и левой частях ньютоновой формулы. Еще сам Ньютон с весьма высокой для своего времени точностью показал, что G – величина постоянная и, следовательно, открытый им закон тяготения универсален.

Две притягивающиеся точечные массы M и m фигурируют в формуле Ньютона равноправно. Другими словами, можно считать, что они обе служат источниками гравитационного поля. Однако в конкретных задачах, в частности в небесной механике, одна из двух масс часто бывает очень мала по сравнению с другой. Например, масса Земли M З ≈ 6 ·10 24 кг намного меньше массы Солнца M ☼ ≈ 2 ·10 30 кг или, скажем, масса спутника m ≈ 10 3 кг не идет ни в какое сравнение с земной массой и поэтому практически никак не влияет на движение Земли. Такую массу, которая сама не возмущает гравитационного поля, а служит как бы зондом, на который это поле действует, называют пробной. (Точно так же в электродинамике существует понятие «пробного заряда», то есть такого, который помогает обнаружить электромагнитное поле.) Поскольку пробная масса (или пробный заряд) вносит в поле пренебрежимо малый вклад, для такой массы поле становится «внешним» и его можно характеризовать величиной, называемой напряженностью. По существу, ускорение свободного падения g – это напряженность поля земного тяготения. Второй закон ньютоновой механики дает тогда уравнения движения точечной пробной массы m . Например, именно так решаются задачи баллистики и небесной механики. Заметим, что для большинства таких задач теория тяготения Ньютона и сегодня обладает вполне достаточной точностью.

Напряженность, как и сила, – величина векторная, то есть в трехмерном пространстве она определяется тремя числами – компонентами вдоль взаимно перпендикулярных декартовых осей х , у , z . При смене системы координат – а такие операции нередки в физических и астрономических задачах – декартовы координаты вектора преобразуются некоторым хоть и не сложным, но зачастую громоздким образом. Поэтому вместо векторной напряженности поля удобно было бы использовать соответствующую ей скалярную величину, из которой силовая характеристика поля – напряженность – получалась бы с помощью какого-нибудь простого рецепта. И такая скалярная величина существует – она называется потенциалом, а переход к напряженности осуществляется простым дифференцированием. Отсюда следует, что ньютоновский гравитационный потенциал, создаваемый массой M , равен

откуда и следует равенство |φ| = v 2 .

В математике теория тяготения Ньютона иногда называется «теорией потенциала». В свое время теория ньютонова потенциала послужила образцом для теории электричества, а затем представления о физическом поле, сформировавшиеся в электродинамике Максвелла, в свою очередь, стимулировали появление общей теории относительности Эйнштейна. Переход от релятивистской теории тяготения Эйнштейна к частному случаю ньютоновой теории гравитации как раз и соответствует области малых значений безразмерного параметра |φ| / c 2 .

Введение

2. Общая теория относительности Эйнштейна

Заключение

Список использованных источников


Введение

Еще в конце XIX века большинство ученых склонялось к точке зрения, что физическая картина мира в основном построена и останется в дальнейшем незыблемой - предстоит уточнять лишь детали. Но в первые десятилетия ХХ века физические воззрения изменились коренным образом. Это было следствием «каскада» научных открытий, сделанных в течение чрезвычайно короткого исторического периода, охватывающего последние годы ХIХ столетия и первые десятилетия ХХ, многие из которых совершенно не укладывались в представление обыденного человеческого опыта. Ярким примером может служить теория относительности, созданная Альбертом Эйнштейном (1879-1955).

Впервые принцип относительности был установлен Галилеем, но окончательную формулировку получил лишь в механике Ньютона.

Принцип относительности означает, что во всех инерциальных системах все механические процессы происходят одинаковым образом.

Когда в естествознании господствовала механистическая картина мира, принцип относительности не подвергался никакому сомнению. Положение резко изменилось, когда физики вплотную приступили к изучению электрических, магнитных и оптических явлений. Для физиков стала очевидной недостаточность классической механики для описания явлений природы. Возник вопрос: выполняется ли принцип относительности и для электромагнитных явлений?

Описывая ход своих рассуждений, Альберт Эйнштейн указывает на два аргумента, которые свидетельствовали в пользу всеобщности принципа относительности:

Этот принцип с большой точностью выполняется в механике, и поэтому можно надеяться, что он окажется правильным и в электродинамике.

Если инерциальные системы неравноценны для описания явлений природы, то разумно предположить, что законы природы проще всего описываются лишь в одной инерциальной системе.

Например, рассматривается движение Земли вокруг Солнца со скоростью 30 километров в секунду. Если бы принцип относительности в данном случае не выполнялся, то законы движения тел зависели бы от направления и пространственной ориентировки Земли. Ничего подобного, т.е. физической неравноценности различных направлений, не обнаружено. Однако здесь возникает кажущаяся несовместимость принципа относительности с хорошо установленным принципом постоянства скорости света в пустоте (300 000 км/с).

Возникает дилемма: отказ либо от принципа постоянства скорости света, либо от принципа относительности. Первый принцип установлен настолько точно и однозначно, что отказ от него был бы явно неоправданным; не меньшие трудности возникают и при отрицании принципа относительности в области электромагнитных процессов. В действительности, как показал Эйнштейн:

«Закон распространения света и принцип относительности совместимы».

Кажущееся противоречие принципа относительности закону постоянства скорости света возникает потому, что классическая механика, по заявлению Эйнштейна, опиралась «на две ничем не оправданные гипотезы»: промежуток времени между двумя событиями не зависит от состояния движения тела отсчета и пространственное расстояние между двумя точками твердого тела не зависит от состояния движения тела отсчета. В ходе разработки своей теории ему пришлось отказаться: от галилеевских преобразований и принять преобразования Лоренца; от ньютоновского понятия абсолютного пространства и определения движения тела относительно этого абсолютного пространства.

Каждое движение тела происходит относительно определенного тела отсчета и поэтому все физические процессы и законы должны формулироваться по отношению к точно указанной системе отсчета или координат. Следовательно, не существует никакого абсолютного расстояния, длины или протяженности, так же как не может быть никакого абсолютного времени.

Новые понятия и принципы теории относительности существенно изменили физические и общенаучные представления о пространстве, времени и движении, которые господствовали в науке более двухсот лет.

Все вышесказанное обосновывает актуальность выбранной темы.

Цель данной работы всестороннее изучение и анализ создания специальной и общей теорий относительности Альбертом Эйнштейном.

Работа состоит из введения, двух частей, заключения и списка использованной литературы. Общий объем работы 16 страниц.

1. Специальная теория относительности Эйнштейна

В 1905 году Альберт Эйнштейн, исходя из невозможности обнаружить абсолютное движение, сделал вывод о равноправии всех инерциальных систем отсчета. Он сформулировал два важнейших постулата, которые составили основу новой теории пространства и времени, получившей название Специальной Теории Относительности (СТО):

1. Принцип относительности Эйнштейна - этот принцип явился обобщением принципа относительности Галилея на любые физические явления. Он гласит: все физические процессы при одних и тех же условиях в инерциальных систем отсчета (ИСО) протекают одинаково. Это означает, что никакими физическими опытами, проведенными внутри замкнутой ИСО, нельзя установить, покоится ли она или движется равномерно и прямолинейно. Таким образом, все ИСО совершенно равноправны, а физические законы инвариантны по отношению к выбору ИСО (т.е. уравнения, выражающие эти законы, имеют одинаковую форму во всех инерциальных системах отсчета).

2. Принцип постоянства скорости света - скорость света в вакууме постоянна и не зависит от движения источника и приемника света. Она одинакова во всех направлениях и во всех инерциальных системах отсчета. Скорость света в вакууме - предельная скорость в природе - это одна из важнейших физических постоянных, так называемых мировых констант.

Глубокий анализ этих постулатов показывает, что они противоречат представлениям о пространстве и времени, принятым в механике Ньютона и отраженным в преобразованиях Галилея. Действительно, согласно принципу 1 все законы природы, в том числе законы механики и электродинамики, должны быть инвариантны по отношению к одним и тем же преобразованиям координат и времени, осуществляемым при переходе от одной системы отсчета к другой. Уравнения Ньютона этому требованию удовлетворяют, а вот уравнения электродинамики Максвелла – нет, т.е. оказываются не инвариантными. Это обстоятельство привело Эйнштейна к выводу о том, что уравнения Ньютона нуждаются в уточнении, в результате которого как уравнения механики, так и уравнения электродинамики оказались бы инвариантными по отношению к одним и тем же преобразованиям. Необходимое видоизменение законов механики и было осуществлено Эйнштейном. В результате возникла механика, согласующаяся с принципом относительности Эйнштейна – релятивистская механика.

Создатель теории относительности сформулировал обобщенный принцип относительности, который теперь распространяется и на электромагнитные явления, в том числе и на движение света. Этот принцип гласит, что никакими физическими опытами (механическими, электромагнитными и др.), производимыми внутри данной системы отсчета, нельзя установить различие между состояниями покоя и равномерного прямолинейного движения. Классическое сложение скоростей неприменимо для распространения электромагнитных волн, света. Для всех физических процессов скорость света обладает свойством бесконечной скорости. Для того чтобы сообщить телу скорость, равную скорости света, требуется бесконечное количество энергии, и именно поэтому физически невозможно, чтобы какое-нибудь тело достигло этой скорости. Этот результат был подтвержден измерениями, которые проводились над электронами. Кинетическая энергия точечной массы растет быстрее, нежели квадрат ее скорости, и становится бесконечной для скорости, равной скорости света.

Скорость света является предельной скоростью распространения материальных воздействий. Она не может складываться ни с какой скоростью и для всех инерциальных систем оказывается постоянной. Все движущиеся тела на Земле по отношению к скорости света имеют скорость, равную нулю. И в самом деле, скорость звука всего лишь 340 м/с. Это неподвижность по сравнению со скоростью света.

Из этих двух принципов - постоянства скорости света и расширенного принципа относительности Галилея - математически следуют все положения специальной теории относительности. Если скорость света постоянна для всех инерциальных систем, а они все равноправны, то физические величины длины тела, промежутка времени, массы для разных систем отсчета будут различными. Так, длина тела в движущейся системе будет наименьшей по отношению к покоящейся. По формуле:

где /" - длина тела в движущейся системе со скоростью V по отношению к неподвижной системе; / - длина тела в покоящейся системе.

Для промежутка же времени, длительности какого-либо процесса - наоборот. Время будет как бы растягиваться, течь медленнее в движущейся системе по отношению к неподвижной, в которой этот процесс будет более быстрым. По формуле:


Напомним, что эффекты специальной теории относительности будут обнаруживаться при скоростях, близких к световым. При скоростях значительно меньше скорости света формулы СТО переходят в формулы классической механики.

Рис.1. Эксперимент «Поезд Эйнштейна»

Эйнштейн попытался наглядно показать, как происходит замедление течения времени в движущейся системе по отношению к неподвижной. Представим себе железнодорожную платформу, мимо которой проходит поезд со скоростью, близкой к скорости света (рис.1).

Еще в конце XIX века большинство ученых склонялось к точке зрения, что физическая картина мира в основном построена и останется в дальнейшем незыблемой - предстоит уточнять лишь детали. Но в первые десятилетия ХХ века физические воззрения изменились коренным образом. Это было следствием «каскада» научных открытий, сделанных в течение чрезвычайно короткого исторического периода, охватывающего последние годы ХIХ столетия и первые десятилетия ХХ, многие из которых совершенно не укладывались в представление обыденного человеческого опыта. Ярким примером может служить теория относительности, созданная Альбертом Эйнштейном (1879-1955).

Теория относительности - физическая теория пространства-времени, то есть теория, описывающая универсальные пространственно-временные свойства физических процессов. Термин был введен в 1906 году Максом Планком с целью подчеркнуть роль принципа относительности
в специальной теории относительности (и, позже, общей теории относительности).

В узком смысле теория относительности включает в себя специальную и общую теорию относительности. Специальная теория относительности (далее - СТО) относится к процессам, при исследовании которых полями тяготения можно пренебречь; общая теория относительности (далее - ОТО) - это теория тяготения, обобщающая ньютоновскую.

Специальная , или частная теория относительности - это теория структуры пространства-времени. Впервые была представлена в 1905 году Альбертом Эйнштейном в работе «К электродинамике движущихся тел». Теория описывает движение, законы механики, а также пространственно-временные отношения, определяющие их, при любых скоростях движения,
в том числе и близких к скорости света. Классическая механика Ньютона
в рамках СТО является приближением для малых скоростей.

Одна из причин успеха Альберта Эйнштейна состоит в том, что он ставил экспериментальные данные выше теоретических. Когда в ряде экспериментов обнаружились результаты, противоречащие общепринятой теории, многие физики решили, что эти эксперименты ошибочны.

Альберт Эйнштейн был одним из первых, кто решил построить новую теорию на базе новых экспериментальных данных.

В конце 19 века физики находились в поиске таинственного эфира – среды, в которой по общепринятым предположениям должны были распространяться световые волны, подобно акустическим, для распространения которых необходим воздух, или же другая среда – твердая, жидкая или газообразная. Вера в существование эфира привела к убеждению, что скорость света должна меняться в зависимости от скорости наблюдателя по отношению к эфиру. Альберт Эйнштейн отказался от понятия эфира и предположил, что все физические законы, включая скорость света, остаются неизменными независимо от скорости наблюдателя – как это и показывали эксперименты.


СТО объясняла, как интерпретировать движения между различными инерциальными системами отсчета – попросту говоря, объектами, которые движутся с постоянной скоростью по отношению друг к другу. Эйнштейн объяснил, что когда два объекта двигаются с постоянной скоростью, следует рассматривать их движение друг относительно друга, вместо того чтобы принять один из них в качестве абсолютной системы отсчета. Так что, если два космонавта летят на двух космических кораблях и хотят сравнить свои наблюдения, единственное, что им нужно знать – это скорость относительно друг друга.

Специальная теория относительности рассматривает лишь один специальный случай (отсюда и название), когда движение прямолинейно и равномерно.

Исходя из невозможности обнаружить абсолютное движение, Альберт Эйнштейн сделал вывод о равноправии всех инерциальных систем отсчета. Он сформулировал два важнейших постулата, которые составили основу новой теории пространства и времени, получившей название Специальной Теории Относительности (СТО):

1. Принцип относительности Эйнштейна - этот принцип явился обобщением принципа относительности Галилея (утверждает то же самое, но не для всех законов природы, а только для законов классической механики, оставляя открытым вопрос о применимости принципа относительности к оптике и электродинамике) на любые физические. Он гласит: все физические процессы при одних и тех же условиях в инерциальных систем отсчета (ИСО) протекают одинаково . Это означает, что никакими физическими опытами, проведенными внутри замкнутой ИСО, нельзя установить, покоится ли она или движется равномерно и прямолинейно. Таким образом, все ИСО совершенно равноправны, а физические законы инвариантны по отношению к выбору ИСО (т.е. уравнения, выражающие эти законы, имеют одинаковую форму во всех инерциальных системах отсчета).

2. Принцип постоянства скорости света - скорость света в вакууме постоянна и не зависит от движения источника и приемника света . Она одинакова во всех направлениях и во всех инерциальных системах отсчета. Скорость света в вакууме - предельная скорость в природе - это одна из важнейших физических постоянных, так называемых мировых констант.

Важнейшим следствием СТО явилась знаменитая формула Эйнштейна о взаимосвязи массы и энергии Е=mc 2 (где С - скорость света), которая показала единство пространства и времени, выражающееся в совместном изменении их характеристик в зависимости от концентрации масс и их движения и подтвержденная данными современной физики. Время и пространство перестали рассматриваться независимо друг от друга и возникло представление о пространственно-временном четырехмерном континууме.

Согласно теории великого физика, когда скорость материального тела увеличивается, приближаясь к скорости света, увеличивается и его масса. Т.е. чем быстрее движется объект, тем тяжелее он становится. В случае достижения скорости света, масса тела, равно как и его энергия, становятся бесконечными. Чем тяжелее тело, тем сложнее увеличить его скорость; для ускорения тела с бесконечной массой требуется бесконечное количество энергии, поэтому для материальных объектов достичь скорости света невозможно.

В теории относительности «два закона - закон сохранения массы и сохранения энергии - потеряли свою независимую друг от друга справедливость и оказались объединенными в единый закон, который можно назвать законом сохранения энергии или массы». Благодаря фундаментальной связи между этими двумя понятиями, материю можно превратить в энергию, и наоборот – энергию в материю.

Общая теория относительности - теория гравитации, опубликованная Эйнштейном в 1916 году, над которой работал в течение 10 лет. Является дальнейшим развитием специальной теории относительности. Если материальное тело ускоряется или сворачивает в сторону, законы СТО уже не действуют. Тогда в силу вступает ОТО, которая объясняет движения материальных тел в общем случае.

В общей теории относительности постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, а деформацией самого пространства-времени, в котором они находятся. Эта деформация связана, в частности, с присутствием массы-энергии.

ОТО в настоящее время - самая успешная теория гравитации, хорошо подтверждённая наблюдениями. ОТО обобщила СТО на ускоренные, т.е. неинерциальные системы. Основные принципы ОТО сводятся к следующему:

- ограничение применимости принципа постоянства скорости света областями, где гравитационными силами можно пренебречь (там, где гравитация велика, скорость света замедляется);

- распространение принципа относительности на все движущиеся системы (а не только на инерциальные).

В ОТО, или теории тяготе­ния он также исхо­дит из экспериментального факта эквивалентности масс инер­ционных и гравитационных, или эквивалентности инерцион­ных и гравитационных полей.

Принцип эквивалентности играет важную роль в науке. Мы всегда можем вычислить непо­средственно действие сил инерции на любую физическую систему, и это дает нам возможность знать действие поля тяготения, отвлека­ясь от его неоднородности, которая часто очень незначительна.

Из ОТО был получен ряд важных выводов:

1. Свойства пространства-времени зависят от движущейся материи.

2. Луч света, обладающий инертной, а, следовательно, и гравитационной массой, должен искривляться в поле тяготения.

3. Частота света под действием поля тяготения должна смещаться в сторону более низких значений.

Долгое время экспериментальных подтверждений ОТО было мало. Согласие теории с опытом достаточно хорошее, но чистота экспериментов нарушается различными сложными побочными влияниями. Однако влияние искривления пространства-времени можно обнаружить даже в умеренных гравитационных полях. Очень чувствительные часы, например, могут обнаружить замедление времени на поверхности Земли. Чтобы расширить экспериментальную базу ОТО, во второй половине XX века были поставлены новые эксперименты: проверялась эквивалентность инертной и гравитационной масс (в том числе и путем лазерной локации Луны);
с помощью радиолокации уточнялось движение перигелия Меркурия; измерялось гравитационное отклонение радиоволн Солнцем, проводилась радиолокация планет Солнечной системы; оценивалось влияние гравитационного поля Солнца на радиосвязь с космическими кораблями, которые отправлялись к дальним планетам Солнечной системы, и т.д. Все они, так или иначе, подтвердили предсказания, полученные на основе ОТО.

Итак, специальная теория относительности основывается на постулатах постоянства скорости света и одинаковости законов природы во всех физических системах, а основные результаты, к которым она приходит таковы: относительность свойств пространства-времени; относительность массы и энергии; эквивалентность тяжелой и инертной масс.

Наиболее значительным результатом общей теории относительности с философской точки зрения является установление зависимости пространственно-временных свойств окружающего мира от расположения и движения тяготеющих масс. Именно благодаря воздействию тел
с большими массами происходит искривление путей движения световых лучей. Следовательно, гравитационное поле, создаваемое такими телами, определяет в конечном итоге пространственно-временные свойства мира.

В специальной теории относительности абстрагируются от действия гравитационных полей и поэтому ее выводы оказываются применимыми лишь для небольших участков пространства – времени. Кардинальное отличие общей теории относительности от предшествующих ей фундаментальных физических теорий в отказе от ряда старых понятий и формулировке новых. Стоит сказать, что общая теория относительности произвела настоящий переворот в космологии. На ее основе появились различные модели Вселенной.