Скорость реакции, ее зависимость от различных факторов. Факторы, от которых зависит скорость реакции

В жизни мы сталкиваемся с разными химическими реакциями. Одни из них, как ржавление железа, могут идти несколько лет. Другие, например, сбраживание сахара в спирт, - несколько недель. Дрова в печи сгорают за пару часов, а бензин в моторе - за долю секунды.

Чтобы уменьшить затраты на оборудование, на химических заводах повышают скорость реакций. А некоторые процессы, например, порчу пищевых продуктов, коррозию металлов, - нужно замедлить.

Скорость химической реакции можно выразить как изменение количества вещества (n, по модулю) в единицу времени (t) - сравните скорость движущегося тела в физике как изменение координат в единицу времени: υ = Δx/Δt . Чтобы скорость не зависела от объема сосуда, в котором протекает реакция, делим выражение на объем реагирующих веществ (v), т. е. получаем изменение количества вещества в единицу времени в единице объема, или изменение концентрации одного из веществ в единицу времени :


n 2 − n 1 Δn
υ = –––––––––– = –––––––– = Δс/Δt (1)
(t 2 − t 1) v Δt v

где c = n / v - концентрация вещества,

Δ (читается «дельта») - общепринятое обозначение изменения величины.

Если в уравнении у веществ разные коэффициенты, скорость реакции для каждого из них, рассчитанная по этой формуле будет различной. Например, 2 моль серни́стого газа прореагировали полностью с 1 моль кислорода за 10 секунд в 1 литре:

2SO 2 + O 2 = 2SO 3

Скорость по кислороду будет: υ = 1: (10 1) = 0,1 моль/л·с

Скорость по серни́стому газу: υ = 2: (10 1) = 0,2 моль/л·с - это не нужно запоминать и говорить на экзамене, пример приведен для того, чтобы не путаться, если возникнет этот вопрос.

Скорость гетерогенных реакций (с участием твердых веществ) часто выражают на единицу площади соприкасающихся поверхностей:


Δn
υ = –––––– (2)
Δt S

Гетерогенными называются реакции, когда реагирующие вещества находятся в разных фазах:

  • твердое вещество с другим твердым, жидкостью или газом,
  • две несмешивающиеся жидкости,
  • жидкость с газом.

Гомогенные реакции протекают между веществами в одной фазе:

  • между хорошо смешивающимися жидкостями,
  • газами,
  • веществами в растворах.

Условия, влияющие на скорость химических реакций

1) Скорость реакции зависит от природы реагирующих веществ . Проще говоря, разные вещества реагируют с разной скоростью. Например, цинк бурно реагирует с соляной кислотой, а железо довольно медленно.

2) Скорость реакции тем больше, чем выше концентрация веществ. С сильно разбавленной кислотой цинк будет реагировать значительно дольше.

3) Скорость реакции значительно повышается с повышением температуры . Например, для горения топлива необходимо его поджечь, т. е. повысить температуру. Для многих реакций повышение температуры на 10° C сопровождается увеличением скорости в 2–4 раза.

4) Скорость гетерогенных реакций увеличивается с увеличением поверхности реагирующих веществ . Твердые вещества для этого обычно измельчают. Например, чтобы порошки железа и серы при нагревании вступили в реакцию, железо должно быть в виде мелких опилок.

Обратите внимание, что в данном случае подразумевается формула (1) ! Формула (2) выражает скорость на единице площади, следовательно не может зависеть от площади.

5) Скорость реакции зависит от наличия катализаторов или ингибиторов.

Катализаторы - вещества, ускоряющие химические реакции, но сами при этом не расходующиеся. Пример - бурное разложение перекиси водорода при добавлении катализатора - оксида марганца (IV):

2H 2 O 2 = 2H 2 O + O 2

Оксид марганца (IV) остается на дне, его можно использовать повторно.

Ингибиторы - вещества, замедляющие реакцию. Например, для продления срока службы труб и батарей в систему водяного отопления добавляют ингибиторы коррозии. В автомобилях ингибиторы коррозии добавляются в тормозную, охлаждающую жидкость.

Еще несколько примеров.

Темы кодификатора ЕГЭ: Скорость реакции. Ее зависимость от разных факторов.

Скорость химической реакции показывает, как быстро происходит та или иная реакция. Взаимодействие происходит при столкновении частиц в пространстве. При этом реакция происходит не при каждом столкновении, а только когда частица обладают соответствующей энергией.

Скорость реакции – количество элементарных соударений взаимодействующих частиц, заканчивающихся химическим превращением, за единицу времени.

Определение скорости химической реакции связано с условиями ее проведения. Если реакция гомогенная – т.е. продукты и реагенты находятся в одной фазе – то скорость химической реакции определяется, как изменение вещества в единицу времени:

υ = ΔC / Δt.

Если реагенты, или продукты находятся в разных фазах, и столкновение частиц происходит только на границе раздела фаз, то реакция называется гетерогенной , и скорость ее определяется изменением количества вещества в единицу времени на единицу реакционной поверхности:

υ = Δν / (S·Δt).

Как заставить частицы чаще сталкиваться, т.е. как увеличить скорость химической реакции ?

1. Самый простой способ – повысить температуру . Как вам, должно быть, известно из курса физики, температура – это мера средней кинетической энергии движения частиц вещества. Если мы повышаем температуру, то частицы любого вещества начинают двигаться быстрее, а следовательно, сталкиваться чаще.

Однако при повышении температуры скорость химических реакций увеличивается в основном благодаря тому, что увеличивается число эффективных соударений. При повышении температуры резко увеличивается число активных частиц, которые могут преодолеть энергетичекий барьер реакции. Если понижаем температуру – частицы начинают двигаться медленнее, число активных частиц уменьшается, и количество эффективных соударений в секунду уменьшается. Таким образом, при повышении температуры скорость химической реакции повышается, а при понижении температуры — уменьшается .

Обратите внимание! Это правило работает одинаково для всех химических реакций (в том числе для экзотермических и эндотермических). Скорость реакции не зависит от теплового эффекта. Скорость экзотермических реакций при повышении температуры возрастает, а при понижении температуры – уменьшается. Скорость эндотермических реакций также возрастает при повышении температуры, и уменьшается при понижении температуры.

Более того, еще в XIX веке голландский физик Вант-Гофф экспериментально установил, что большинство реакций примерно одинаково увеличивают скорость (примерно в 2-4 раза) при повышении температуры на 10 о С. Правило Вант-Гоффа звучит так: повышение температуры на 10 о С приводит к увеличению скорости химической реакции в 2-4 раза (эту величину называют температурный коэффициент скорости химической реакции γ). Точное значение температурного коэффициента определяется для каждой реакции.

Здесь v 2 — скорость реакции при температуре T 2 , v 1 — скорость реакции при температуре T 1 , γ — температурный коэффициент скорости реакции, коэффинциент Вант-Гоффа.

В некоторых ситуациях повысить скорость реакции с помощью температуры не всегда удается, т.к. некоторые вещества разлагаются при повышении температуры, некоторые вещества или арстворители испаряются при повышенной температуре и т.д., т.е. нарушаются условия проведения процесса.

2. Концентрация. Также повысить число эффективных соударений можно, изменив концентрацию реагирующих веществ . как правило, используется для газов и жидкостей, т.к. в газах и жидкостях частицы быстро двигаются и активно перемешиваются. Чем больше концентрация реагирующих веществ (жидкостей, газов), тем больше число эффективных соударений, и тем выше скорость химической реакции.

На основании большого числа экспериментов в 1867 году в работах норвежских ученых П. Гульденберга и П. Вааге и, независимо от них, в 1865 году русским ученым Н.И. Бекетовым был выведен основной закон химической кинетики, устанавливающий зависимость скорости химической реакции от концентрации реагирующих веществ:

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных их коэффициентам в уравнении химической реакции.

Для химической реакции вида: aA + bB = cC + dD закон действующих масс записывается так:

здесь v — скорость химической реакции,

C A и C B — концентрации веществ А и В, соответственно, моль/л

k – коэффициент пропорциональности, константа скорости реакции.

Например , для реакции образования аммиака:

N 2 + 3H 2 ↔ 2NH 3

закон действующих масс выглядит так:

Константа скорости реакции показывает, с какой скоростью будут реагировать вещества, если их концентрации равны 1 моль/л, или их произведение равно 1. Константа скорости химической реакции зависит от температуры и не зависит от концентрации реагирующих веществ.

В законе действующих масс не учитываются концентрации твердых веществ, т.к. они реагируют, как правило, на поверхности, и количество реагирующих частиц на единицу поверхности при этом не меняется.

В большинстве случаев химическая реакция осстоит из несольких простых этапов, в таком случае уравнение химической реакции показывает лишь суммарное или итоговое уравнение происходящих процессов. При этом скорость химической реакции сложным образом зависит (или не зависит) от концентрации реагирующих веществ, полупродуктов или катализатора, поэтому точная форма кинетического уравнения определяется экспериментально, или на основании анализа предполагаемого механизма реакции. Как правило, скорость сложной химической реакции определяется скоростью его самого медленного этапа (лимитирующей стадии ).

3. Давление. Для газов концентрация напрямую зависит от давления . При повышении давления повышается концентрация газов. Математическое выражение этой зависимости (для идеального газа) — уравнение Менделеева-Клапейрона:

pV = νRT

Таким образом, если среди реагентов есть газообразное вещество, то при повышении давления скорость химической реакции увеличивается, при понижении давления — уменьшается .

Например. Как изменится скорость реакции сплавления извести с оксидом кремния:

CaCO 3 + SiO 2 ↔ CaSiO 3 + CO 2

при повышении давления?

Правильным ответом будет – никак, т.к. среди реагентов нет газов, а карбонат кальция – твердая соль, нерастворимая в воде, оксид кремния – твердое вещество. Газом будет продукт – углекислый газ. Но продукты не влияют на скорость прямой реакции.

Еще один способ увеличить скорость химической реакции – направить ее по другому пути, заменив прямое взаимодействие, например, веществ А и В серией последовательных реакций с третьим веществом К, которые требуют гораздо меньших затрат энергии (имеют более низкий активационный энергетический барьер) и протекают при данных условиях быстрее, чем прямая реакция. Это третье вещество называют катализатором .

– это химические вещества, участвующие в химической реакции, изменяющие ее скорость и направление, но не расходующиеся в ходе реакции (по окончании реакции не изменяющиеся ни по количеству, ни по составу). Примерный механизм работы катализатора для реакции вида А + В можно изобрать так:

A + K = AK

AK + B = AB + K

Процесс изменения скорости реакции при взаимодействии с катализатором называют катализом . Катализаторы широко применяют в промышленности, когда необходимо увеличить скорость реакции, либо направить ее по определенному пути.

По фазовому состоянию катализатора различают гомогенный и гетерогенный катализ.

Гомогенный катализ – это когда реагирующие вещества и катализатор находятся в одной фазе (газ, раствор). Типичные гомогенные катализаторы – кислоты и основания. органические амины и др.

Гетерогенный катализ – это когда реагирующие вещества и катализатор находятся в разных фазах. Как правило, гетерогенные катализаторы – твердые вещества. Т.к. взаимодействие в таких катализаторах идет только на поверхности вещества, важным требованием для катализаторов является большая площадь поверхности. Гетерогенные катализаторы отличает высокая пористость, которая увеличивает площадь поверхности катализатора. Так, суммарная площадь поверхности некоторых катализаторов иногда достигает 500 квадратных метров на 1 г катализатора. Большая площадь и пористость обеспечивают эффективное взаимодействие с реагентами. К гетерогенным катализаторам относятся металлы, цеолиты - кристаллические минералы группы алюмосиликатов (соединений кремния и алюминия), и другие.

Пример гетерогенного катализа – синтез аммиака :

N 2 + 3H 2 ↔ 2NH 3

В качестве катализатора используется пористое железо с примесями Al 2 O 3 и K 2 O.

Сам катализатор не расходуется в ходе химической реакции, но на поверхности катализатора накапливаются другие вещества, связывающие активные центры катализатора и блокирующие его работу (каталитические яды ). Их необходимо регулярно удалять, путем регенерации катализатора.

В биохимических реакция очень эффективными оказываются катализаторы – ферменты . Ферментативные катализаторы действуют высокоэффективно и избирательно, с избарительностю 100%. К сожалению, ферменты очень чувствительны к повышению температуры, кислотности среды и другим факторам, поэтому есть ряд ограничений для реализации в промышленных масштабах процессов с ферментативным катализом.

Катализаторы не стоит путать с инициаторами процесса и ингибиторами . Например , для инициирования радикальной реакции хлорирования метана необходимо облучение ультрафиолетом. Это не катализатор. Некоторые радикальные реакции инициируются пероксидными радикалами. Это также не катализаторы.

Ингибиторы – это вещества, которые замедляют химическую реакцию. Ингибиторы могут расходоваться и участвовать в химической реакции. При этом ингибиторы не являются катализаторами наоброт. Обратный катализ в принципе невозможен – реакция в любом случае будет пытаться идти по наиболее быстрому пути.

5. Площадь соприкосновения реагирующих веществ. Для гетерогенных реакций одним из способов увеличить число эффективных соударений является увеличение площади реакционной поверхности . Чем больше площадь поверхности контакта реагирующих фаз, тем больше скорость гетерогенной химической реакции. Порошковый цинк гораздо быстрее растворяется в кислоте, чем гранулированный цинк такой же массы.

В промышленности для увеличения площади контактирующей поверхности реагирующих веществ используют метод кипящего слоя . Например , при производстве серной кислоты методом кипящег ослоя производят обжиг колчедана.

6. Природа реагирующих веществ . На скорость химических реакций при прочих равных условиях также оказывают влияние химические свойства, т.е. природа реагирующих веществ. Менее активные вещества будут имеют более высокий активационный барьер, и вступают в реакции медленнее, чем более активные вещества. Более активные вещества имеют более низкую энергию активации, и значительно легче и чаще вступают в химические реакции.

При небольших значениях энергии активации (менее 40 кДж/моль) реакция проходит очень быстро и легко. Значительная часть столкновений между частицами заканчивается химическим превращением. Например, реакции ионного обмена происходят при обычных условиях очень быстро.

При высоких значениях энергии активации (более 120 кДж/моль) лишь незначительное число столкновений заканчивается химическим превращением. Скорость таких реакций пренебрежимо мала. Например, азот с кислородом практически не взаимодействует при нормальных условиях.

При средних значениях энергии активации (от 40 до 120 кДж/моль) скорость реакции будет средней. Такие реакции также идут при обычных условиях, но не очень быстро, так, что их можно наблюдать невооруженным глазом. К таким реакциям относятся взаимодействие натрия с водой, взаимодействие железа с соляной кислотой и др.

Вещества, стабильные при нормальных условиях, как правило, имеют высокие значения энергии активации.

Системы. Но данная величина не отражает настоящую возможность протекания реакции, ее скорость и механизм.

Для полноценного представления химической реакции, надо иметь знания о том, какие существуют временные закономерности при ее осуществлении, т.е. скорость химической реакции и ее детальный механизм. Скорость и механизм реакции изучает химическая кинетика – наука о химическом процессе.

С точки зрения химической кинетики, реакции можно классифицировать на простые и сложные .

Простые реакции – процессы, протекающие без образования промежуточных соединений. По количеству частиц, принимающих в ней участие, они делятся на мономолекулярные, бимолекулярные, тримолекулярные. Соударение большего чем 3 числа частиц маловероятно, поэтому тримолекулярные реакции достаточно редки, а четырехмолекулярные — неизвестны. Сложные реакции – процессы, состоящие из нескольких элементарных реакций.

Любой процесс протекает с присущей ему скоростью, которую можно определить по изменениям, происходящим за некий отрезок времени. Среднюю скорость химической реакции выражают изменением количества вещества n израсходованного или полученного вещества в единице объема V за единицу времени t.

υ = ± dn / dt · V

Если вещество расходуется, то ставим знак «-», если накапливается – «+»

При постоянном объеме:

υ = ± dC / dt ,

Единица измерения скорости реакции моль/л·с

В целом, υ — величина постоянная и не зависит от того, за каким участвующим в реакции веществом, мы следим.

Зависимость концентрации реагента или продукта от времени протекания реакции представляют в виде кинетической кривой , которая имеет вид:

Вычислять υ из экспериментальных данных удобнее, если указанные выше выражения преобразовать в следующее выражение:

Закон действующих масс. Порядок и константа скорости реакции

Одна из формулировок закона действующих масс звучит следующим образом: Скорость элементарной гомогенной химической реакции прямо пропорциональна произведению концентраций реагентов.

Если исследуемый процесс представить в виде:

а А + b В = продукты

то скорость химической реакции можно выразить кинетическим уравнением :

υ = k·[A] a ·[B] b или

υ = k·C a A ·C b B

Здесь [ A ] и [ B ] (C A и C B )- концентрации реагентов,

а и b – стехиометрические коэффициенты простой реакции,

k – константа скорости реакции.

Химический смысл величины k — это скорость реакции при единичных концентрациях. То есть, если концентрации веществ А и В равны 1, то υ = k .

Надо учитывать, что в сложных химических процессах коэффициенты а и b не совпадают со стехиометрическими.

Закон действующих масс выполняется при соблюдении ряда условий:

  • Реакция активируется термично, т.е. энергией теплового движения .
  • Концентрация реагентов распределена равномерно.
  • Свойства и условия среды в ходе процесса не меняются.
  • Свойства среды не должны влиять на k .

К сложным процессам закон действия масс применить нельзя. Это можно объяснить тем, что сложный процесс состоит из нескольких элементарных стадий, и его скорость будет определяться не суммарной скоростью всех стадий, лишь одной самой медленной стадией, которя называется лимитирующей .

Каждая реакция имеет свой порядок . Определяют частный (парциальный) порядок по реагенту и общий (полный) порядок . Например, в выражении скорости химической реакции для процесса

а А + b В = продукты

υ = k ·[ A ] a ·[ B ] b

a – порядок по реагенту А

b порядок по реагенту В

Общий порядок a + b = n

Для простых процессов порядок реакции указывает на количество реагирующих частиц (совпадает со стехиометрическими коэффициентами) и принимает целочисленные значения. Для сложных процессов порядок реакции не совпадает со стехиометрическими коэффициентами и может быть любым.

Определим факторы, влияющие на скорость химической реакции υ.

  1. Зависимость скорости реакции от концентрации реагирующих веществ

    определяется законом действующих масс: υ = k [ A ] a ·[ B ] b

Очевидно, что с увеличением концентраций реагирующих веществ, υ увеличивается, т.к. увеличивается число соударений между участвующими в химическом процессе веществами. Причем, важно учитывать порядок реакции: если это n = 1 по некоторому реагенту, то ее скорость прямо пропорциональна концентрации этого вещества. Если по какому-либо реагенту n = 2 , то удвоение его концентрации приведет к росту скорости реакции в 2 2 = 4 раза, а увеличение концентрации в 3 раза ускорит реакцию в 3 2 = 9 раз.

ОПРЕДЕЛЕНИЕ

Химическая кинетика – учение о скоростях и механизмах химических реакций.

Изучение скоростей протекания реакций, получение данных о факторах, влияющих на скорость химической реакции, а также изучение механизмов химических реакций осуществляют экспериментально.

ОПРЕДЕЛЕНИЕ

Скорость химической реакции – изменение концентрации одного из реагирующих веществ или продуктов реакции в единицу времени при неизменном объеме системы.

Скорость гомогенной и гетерогенной реакций определяются различно.

Определение меры скорости химической реакции можно записать в математической форме. Пусть – скорость химической реакции в гомогенной системе, n B – число моле какого-либо из получающихся при реакции веществ, V – объем системы, – время. Тогда в пределе:

Это уравнение можно упростить – отношение количества вещества к объему представляет собой молярную концентрацию вещества n B /V = c B , откуда dn B / V = dc B и окончательно:

На практике измеряют концентрации одного или нескольких веществ в определенные промежутки времени. Концентрации исходных веществ со временем уменьшаются, а концентрации продуктов – увеличиваются (рис. 1).


Рис. 1. Изменение концентрации исходного вещества (а) и продукта реакции (б) со временем

Факторы, влияющие на скорость химической реакции

Факторами, оказывающими влияние на скорость химической реакции, являются: природа реагирующих веществ, их концентрации, температура, присутствие в системе катализаторов, давление и объем (в газовой фазе).

С влиянием концентрации на скорость химической реакции связан основной закон химической кинетики – закон действующих масс (ЗДМ): скорость химической реакции прямопропорциональна произведению концентраций реагирующих веществ, возведенных в степени их стехиометрических коэффициентов. ЗДМ не учитывает концентрацию веществ в твердой фазе в гетерогенных системах.

Для реакции mA +nB = pC +qD математическое выражение ЗДМ будет записываться:

K × C A m × C B n

K × [A] m × [B] n ,

где k – константа скорости химической реакции, представляющая собой скорость химической реакции при концентрации реагирующих веществ 1моль/л. В отличие от скорости химической реакции, k не зависит от концентрации реагирующих веществ. Чем выше k, тем быстрее протекает реакция.

Зависимость скорости химической реакции от температуры определяется правилом Вант-Гоффа. Правило Вант-Гоффа: при повышении температуры на каждые десять градусов скорость большинства химических реакций увеличивается примерно в 2 – 4 раза. Математическое выражение:

(T 2) = (T 1) × (T2-T1)/10 ,

где – температурный коэффициент Вант-Гоффа, показывающий во сколько раз увеличилась скорость реакции при повышении температуры на 10 o С.

Молекулярность и порядок реакции

Молекулярность реакции определяется минимальным числом молекул, одновременно вступающих во взаимодействие (участвующих в элементарном акте). Различают:

— мономолекулярные реакции (примером могут служить реакции разложения)

N 2 O 5 = 2NO 2 + 1/2O 2

K × C, -dC/dt = kC

Однако, не все реакции, подчиняющиеся этому уравнению мономолекулярны.

— бимолекулярные

CH 3 COOH + C 2 H 5 OH = CH 3 COOC 2 H 5 + H 2 O

K × C 1 × C 2 , -dC/dt = k × C 1 × C 2

— тримолекулярные (встречаются очень редко).

Молекулярность реакции определяется ее истинным механизмом. По записи уравнения реакции определить ее молекулярность нельзя.

Порядок реакции определяется по виду кинетического уравнения реакции. Он равен сумме показателей степеней концентрации в этом уравнении. Например:

CaCO 3 = CaO + CO 2

K × C 1 2 × C 2 – третий порядок

Порядок реакции может быть дробным. В таком случае он определяется экспериментально. Если реакция протекает в одну стадию, то порядок реакции и ее молекулярность совпадают, если в несколько стадий, то порядок определяется самой медленной стадией и равен молекулярности этой реакции.

Примеры решения задач

ПРИМЕР 1

Задание Реакция протекает по уравнению 2А + В = 4С. Начальная концентрация вещества А 0,15 моль/л, а через 20 секунд – 0,12 моль/л. Вычислите среднюю скорость реакции.
Решение Запишем формулу для вычисления средней скорости химической реакции:

Основные изучаемые понятия:

Скорость химических реакций

Молярная концентрация

Кинетика

Гомогенные и гетерогенные реакции

Факторы, влияющие на скорость химических реакций

Катализатор, ингибитор

Катализ

Обратимые и необратимые реакции

Химическое равновесие

Химические реакции – это реакции, в результате которых из одних веществ получаются другие (из исходных веществ образуются новые вещества). Одни химические реакции протекают за доли секунды (взрыв), другие же – за минуты, дни, годы, десятилетия и т.д.

Например: мгновенно с воспламенением и взрывом происходит реакция горения пороха, а реакция потемнения серебра или ржавления железа (коррозия) идёт так медленно, что проследить за её результатом можно лишь по истечении длительного времени.

Для характеристики быстроты химической реакции используют понятие скорости химической реакции – υ.

Скорость химической реакции – это изменение концентрации одного из реагирующих веществ реакции в единицу времени.

Формула вычисления скорости химической реакции:

υ = с 2 – с 1 = ∆ с
t 2 – t 1 ∆ t

с 1 – молярная концентрация вещества в начальный момент времени t 1

с 2 – молярная концентрация вещества в начальный момент времени t 2

так как скорость химической реакции характеризуется изменением молярной концентрации реагирующих веществ (исходных веществ), то t 2 > t 1 , а с 2 > с 1 (концентрация исходных веществ убывает по мере протекания реакции).

Молярная концентрация (с) – это количество вещества в единице объёма. Единица измерения молярной концентрации - [моль/л].

Раздел химии, который изучает скорость химических реакций, называется химической кинетикой . Зная её законы, человек может управлять химическими процессами, задавать им определённую скорость.

При расчёте скорости химической реакции необходимо помнить, что реакции делятся на гомогенные и гетерогенные.

Гомогенные реакции – реакции, которые протекают в одной среде (т.е. реагирующие вещества находятся в одинаковом агрегатном состоянии; например: газ + газ, жидкость + жидкость ).

Гетерогенные реакции – это реакции, протекающие между веществами в неоднородной среде (есть поверхность раздела фаз, т.е. реагирующие вещества находятся в разном агрегатном состоянии; например: газ + жидкость, жидкость + твёрдое вещество ).

Данная выше формула расчёта скорости химической реакции справедлива только для гомогенных реакций. Если реакция гетерогенная, то она может идти только на поверхности разделе реагирующих веществ.

Для гетерогенной реакции скорость вычисляется по формуле:

∆ν – изменение количества вещества

S – площадь поверхности раздела фаз

∆ t – промежуток времени, за который проходила реакция

Скорость химических реакций зависит от разных факторов: природы реагирующих веществ, концентрации веществ, температуры, катализаторов или ингибиторов.

Зависимость скорости реакций от природы реагирующих веществ.

Разберём данную зависимость скорости реакции на примере: опустим в две пробирки, в которых находится одинаковое количество раствора соляной кислоты (HCl), одинаковые по площади гранулы металлов: в первую пробирку гранулу железа (Fe), а во вторую – гранулу магния (Mg). В результате наблюдений, по скорости выделения водорода (Н 2), можно заметить, что с наибольшей скорость с соляной кислотой реагирует магний, чем железо . На скорость данной химической реакции оказывает влияние природа металла (т.е. магний более химически активный металл, чем железо, и поэтому он более энергично взаимодействует с кислотой).

Зависимость скорости химических реакций от концентрации реагирующих веществ.

Чем выше концентрация реагирующего (исходного) вещества, тем быстрее протекает реакция. И наоборот, чем меньше концентрация реагирующего вещества, тем медленнее идёт реакция.

Например: нальём в одну пробирку концентрированный раствор соляной кислоты (HCl), а в другую – разбавленный раствор соляной кислоты. Положим в обе пробирки по грануле цинка (Zn). Пронаблюдаем, по скорости выделения водорода, что реакция быстрее пойдёт в первой пробирке, т.к. концентрация соляной кислоты в ней больше, чем во второй пробирке.

Для определения зависимости скорости химической реакции применяют закон действия (действующих) масс : скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, которые равны их коэффициентам.

Например, для реакции, протекающей по схеме : nA + mB → D , скорость химической реакции определяют по формуле:

υ х.р. = k · C (A) n · C (B) m , где

υ х.р - скорость химической реакции

C (A) – А

C (В) – молярная концентрация вещества В

n и m – их коэффициенты

k – константа скорости химической реакции (справочная величина).

Закон действия масс не распространяется на вещества, находящиеся в твёрдом состоянии, т.к. их концентрация постоянна (вследствие того, что они реагируют лишь на поверхности, которая остаётся неизменной).

Например: для реакции 2 Cu + O 2 = 2CuO скорость реакции определяют по формуле:

υ х.р. = k · C(O 2)

ЗАДАЧА: Константа скорости реакции 2А + В = D равна 0,005. вычислить скорость реакции при молярной концентрации вещества А = 0,6 моль/л, вещества В = 0,8 моль/л.

Зависимость скорости химической реакции от температуры .

Эта зависимость определяется правилом Вант – Гоффа (1884г.): при увеличении температура на каждые 10 С о скорость химической реакции увеличивается в среднем в 2 – 4 раза.

Так, взаимодействие водорода (Н 2) и кислорода (О 2) при комнатной температуре почти не происходит, так мала скорость этой химической реакции. Но при температуре 500 С о эта реакция протекает за 50 минут, а при температуре 700 С о – почти мгновенно.

Формула расчёта скорости химической реакции по правилу Вант – Гоффа:

где: υ t 1 и υ t 2 - скорости химических реакций при t 2 и t 1

γ – температурный коэффициент, который показывает во сколько раз увеличивается скорость реакции с повышением температуры на 10 С о.

Изменение скорости реакции:

2. Подставим данные из условия задачи в формулу:

Зависимость скорости реакций от специальных веществ – катализаторов и ингибиторов.

Катализатор – вещество, которое увеличивает скорость химической реакции, но само в ней не участвует.

Ингибитор – вещество, замедляющее химическую реакцию, но само в ней не участвующие.

Пример: в пробирку с раствором 3% перекиси водорода (Н 2 О 2), которую нагрели, внесём тлеющую лучину – она не загорится, т.к. скорость реакции разложения перекиси водорода на воду (Н 2 О) и кислород (О 2) очень мала, и образовавшегося кислорода недостаточно для проведения качественной реакции на кислород (поддержание горения). Теперь внесём в пробирку немного чёрного порошка оксида марганца (IV) (MnO 2) и увидим, что началось бурное выделение пузырьков газа (кислорода), а внесённая в пробирку тлеющая лучина ярко вспыхивает. MnO 2 – катализатор данной реакции, он ускорил скорость реакции, но сам в ней не участвовал (это можно доказать взвесив катализатор до и после проведения реакции – его масса не изменится).