Как работают черные дыры. Черные дыры во вселенной

Такое название она получила из-за того, что поглощает свет, но не отражает его как другие объекты. На самом деле фактов про черные дыры существует множество, и о некоторых самых интересных мы сегодня расскажем. До относительно недавнего времени считалось, что черная дыра в космосе всасывает в себя все, что рядом с ней находится или пролетает: планеты мусор, но, недавно ученые стали утверждать - содержимое через некоторое время «выплевывается» обратно, только совершенно в другом виде. Если вас интересуют черные дыры в космосе интересные факты о них мы сегодня расскажем подробнее.

Существует ли угроза для Земли?

Есть две черные дыры, которые могут представлять реальную угрозу нашей планете, но находятся они, к счастью, для нас далеко на расстоянии примерно 1600 световых лет. Ученые смогли обнаружить эти объекты только потому, что находились они вблизи Солнечной Системы и специальные приборы, улавливающие рентгеновские лучи, смогли их увидеть. Есть предположение, что огромная сила гравитации способна повлиять на черные дыры таким образом, что они сольются в одну.

Вряд ли кто-то из современников сможет застать тот момент, когда эти таинственные объекты исчезнут. Настолько медленно происходит процесс гибели дыр.

Черная дыра - это звезда в прошлом

Как образуются черные дыры в космосе ? Звезды имеют внушительный запас термоядерного топлива, из-за чего они и светятся так ярко. Но все ресурсы заканчиваются, и звезда охлаждается, постепенно теряя свое свечение и превращаясь в черного карлика. Известно, что в остывшей звезде происходит процесс сжатия, в итоге она взрывается, а ее частицы разлетаются на огромные расстояния в космосе, притягивая соседние объекты, тем самым увеличивая размер черной дыры.

Самое интересное про черные дыры в космосе нам еще предстоит изучить, но удивительно, плотность ее, несмотря на внушительные размеры, может равняться плотности воздуха. Это говорит о том, что даже самые крупные объекты космоса могут иметь такой же вес, как воздух, то есть быть невероятно легкими. Вот как появляются черные дыры в космосе .

Время в самой черной дыре и возле течет очень медленно, поэтому объекты, пролетающие рядом замедляют свое движение. Причиной всему огромная сила гравитации, еще более удивительный факт, все процессы, происходящие в самой дыре, имеют невероятную скорость. Допустим, если наблюдать за тем как выглядит черная дыра в космосе , находясь за границами всепоглощающей массы, кажется, что все стоит на месте. Однако стоит только попасть внутрь объекту, его в мгновение бы разорвало. Сегодня нам показывают, как выглядит черная дыра в космосе фото , смоделированное специальными программами.

Определение черной дыры?

Теперь мы знаем откуда берутся черные дыры в космосе . Но что в них еще особенного? Сказать, что черная дыра - это планета или звезда невозможно априори, потому что это тело не газовое и не твердое. Это объект, который способен искажать не только ширину, длину и высоту, но и временную шкалу. Что совершенно не поддается физическим законам. Ученые утверждают, что время в районе горизонта пространственной единицы может двигаться вперед и назад. Что находится в черной дыре в космосе невозможно себе представить, световые кванты, попадающие туда, умножаются в несколько раз на массу сингулярности, этот процесс увеличивает мощь гравитационной силы. Поэтому, если взять с собой фонарик и отправиться черную дыру, светиться он не будет. Сингулярность - точка, в которой все стремится к бесконечности.

Структура черной дыры - это сингулярность и горизонт событий. Внутри сингулярности физические теории полностью теряют свой смысл, поэтому до сих пор она остается загадкой для ученых. Пересекая границу (горизонт событий), физический объект теряет возможность вернуться. Мы знаем далеко не все о черных дырах в космосе , но интерес к ним не угасает.

Каждый человек, знакомящийся с астрономией, рано или поздно испытывает сильное любопытство по поводу самых загадочных объектов Вселенной - черных дыр. Это настоящие властелины мрака, способные «проглотить» любой проходящий поблизости атом и не дать ускользнуть даже свету, - настолько мощно их притяжение. Эти объекты представляют настоящую проблему для физиков и астрономов. Первые пока еще не могут понять, что же происходит с упавшим внутрь черной дыры веществом, а вторые хоть и объясняют самые энергозатратные явления космоса существованием черных дыр, никогда не имели возможности наблюдать ни одну из них непосредственно. Мы расскажем об этих интереснейших небесных объектах, выясним, что уже было открыто и что еще предстоит узнать, чтобы приподнять завесу тайны.

Что такое черная дыра?

Название «черная дыра» (по-английски - black hole) было предложено в 1967 году американским физиком-теоретиком Джоном Арчибальдом Уилером (см. фото слева). Оно служило для обозначения небесного тела, притяжение которого настолько сильно, что не отпускает от себя даже свет. Потому она и «черная», что не испускает света.

Косвенные наблюдения

В этом кроется причина такой таинственности: поскольку черные дыры не светятся, мы не можем увидеть их непосредственно и вынуждены искать и изучать их, используя лишь косвенные свидетельства, которые их существование оставляет в окружающем пространстве. Иными словами, если черная дыра поглощает звезду, мы не видим черную дыру, но можем наблюдать разрушительные последствия воздействия ее мощного гравитационного поля.

Интуиция Лапласа

Несмотря на то, что выражение «черная дыра» для обозначения гипотетической финальной стадии эволюции звезды, сколлапсировавшей в себя под воздействием силы тяжести, появилось сравнительно недавно, идея о возможности существования таких тел возникла более двух веков назад. Англичанин Джон Мичелл и француз Пьер-Симон де Лаплас независимо друг от друга выдвинули гипотезу о существовании «невидимых звезд»; при этом они основывались на обычных законах динамики и законе всемирного тяготения Ньютона. Сегодня черные дыры получили свое правильное описание на основе общей теории относительности Эйнштейна.

В своем труде «Изложение системы мира» (1796) Лаплас писал: «Яркая звезда той же плотности, что и Земля, диаметром, в 250 раз превосходящим диаметр Солнца, благодаря своему гравитационному притяжению не позволила бы световым лучам добраться до нас. Следовательно, возможно, что самые крупные и самые яркие небесные тела по этой причине являются невидимыми».

Непобедимое тяготение

В основе идеи Лапласа лежало понятие скорости убегания (второй космической скорости). Черная дыра является настолько плотным объектом, что ее притяжение способно задержать даже свет, развивающий наибольшую в природе скорость (почти 300000 км/с). На практике, для того чтобы убежать из черной дыры, требуется скорость выше скорости света, но это невозможно!

Это означает, что звезда такого рода будет невидимой, поскольку даже свету не удастся преодолеть ее мощную гравитацию. Эйнштейн объяснял этот факт через явление отклонения света под воздействием гравитационного поля. В реальности вблизи черной дыры пространство-время настолько искривлено, что траектории световых лучей также замыкаются на самих себе. Для того чтобы превратить Солнце в черную дыру, мы должны будем сосредоточить всю его массу в шаре радиусом 3 км, а Земля должна будет превратиться в шарик радиусом 9 мм!

Виды черных дыр

Еще около десяти лет назад наблюдения позволяли предположить существование двух видов черных дыр: звездных, масса которых сравнима с массой Солнца или ненамного превышает ее, и сверхмассивных, масса которых - от нескольких сотен тысяч до многих миллионов масс Солнца. Однако относительно недавно рентгеновские изображения и спектры высокого разрешения, полученные с искусственных спутников типа «Чандра» и «ХММ-Ньютон», вывели на авансцену третий тип черной дыры -с массой средней величины, превосходящей массу Солнца в тысячи раз.

Звездные черные дыры

Звездные черные дыры стали известны раньше других. Они формируются тогда, когда звезда большой массы в конце своего эволюционного пути исчерпывает запасы ядерного горючего и коллапсирует сама в себя из-за собственной гравитации. Потрясающий звезду взрыв (это явление известно под названием «взрыва сверхновой») имеет катастрофические последствия: если ядро звезды превосходит массу Солнца более чем в 10 раз, никакая ядерная сила не способна противостоять гравитационному коллапсу, результатом которого будет появление черной дыры.

Сверхмассивные черные дыры

Иное происхождение имеют сверхмассивные черные дыры, впервые отмеченные в ядрах некоторых активных галактик. Относительно их рождения есть несколько гипотез: звездная черная дыра, которая в течение миллионов лет пожирает все окружающие ее звезды; слившееся воедино скопление черных дыр; колоссальное газовое облако, коллапсирующее непосредственно в черную дыру. Эти черные дыры являются одними из самых насыщенных энергией объектов космоса. Они расположены в центрах очень многих галактик, если не всех. Наша Галактика тоже имеет такую черную дыру. Иногда благодаря наличию такой черной дыры ядра этих галактик становятся очень яркими. Галактики с черными дырами в центре, окруженными большим количеством падающего вещества и, следовательно, способными произвести колоссальное количество энергии, называются «активными», а их ядра -«активными ядрами галактик» (AGN). Например, квазары (самые удаленные от нас космические объекты, доступные нашему наблюдению) являются активными галактиками, у которых мы видим только очень яркое ядро.

Средние и «мини»

Еще одной тайной остаются черные дыры средней массы, которые, согласно недавним исследованиям, могут оказаться в центре некоторых шаровых скоплений, таких, например, как М13 и NCC 6388. Многие астрономы высказываются об этих объектах скептически, но некоторые новейшие исследования позволяют предположить наличие черных дыр средних размеров даже недалеко от центра нашей Галактики. Английский физик Стивен Хокинг выдвинул также теоретическое предположение о существовании четвертого вида черной дыры - «мини-дыры» с массой лишь в миллиард тонн (что примерно равно массе большой горы). Речь идет о первичных объектах, то есть появившихся в первые мгновения жизни Вселенной, когда давление было еще очень высоким. Впрочем, пока не обнаружено ни одного следа их существования.

Как найти черную дыру

Всего несколько лет назад над черными дырами «зажегся свет». Благодаря постоянно совершенствуемым приборам и технологиям (как наземным, так и космическим) эти объекты становятся все менее загадочными; точнее, менее загадочным становится окружающее их пространство. В самом деле, коль скоро сама черная дыра невидима, мы можем распознать ее только в том случае, если она окружена достаточным количеством вещества (звезд и горячего газа), обращающегося вокруг нее на небольшом удалении.

Наблюдая за двойными системами

Некоторые звездные черные дыры были обнаружены в процессе наблюдения орбитального движения звезды вокруг невидимого компаньона по двойной системе. Тесные двойные системы (то есть состоящие из двух очень близких друг к другу звезд), один из компаньонов в которых невидим, - излюбленный объект наблюдений астрофизиков, ищущих черные дыры.

Указанием на наличие черной дыры (или нейтронной звезды) служит сильная эмиссия рентгеновских лучей, вызванная сложным механизмом, который можно схематически описать следующим образом. Благодаря своей мощной гравитации черная дыра может вырывать вещество из звезды-компаньона; этот газ распределяется в форме плоского диска и падает по спирали в черную дыру. Трение, возникающее в результате столкновений частичек падающего газа, нагревает внутренние слои диска до нескольких миллионов градусов, что вызывает мощное излучение рентгеновских лучей.

Наблюдения в рентгеновских лучах

Проводящиеся уже несколько десятилетий наблюдения в рентгеновских лучах объектов нашей Галактики и соседних галактик позволили обнаружить компактные двойные источники, примерно десяток из которых представляет собой системы, содержащие кандидатов в черные дыры. Основной проблемой является определение массы невидимого небесного тела. Значение массы (пусть и не очень точное) можно найти, изучая движение компаньона или, что намного труднее, измеряя интенсивность рентгеновского излучения падающего вещества. Эта интенсивность связана уравнением с массой тела, на которое падает это вещество.

Нобелевский лауреат

Нечто подобное можно сказать и в отношении сверхмассивных черных дыр, наблюдаемых в ядрах многих галактик, массы которых оцениваются через измерение орбитальных скоростей газа, проваливающегося в черную дыру. В этом случае вызванный мощным гравитационным полем очень крупного объекта быстрый рост скорости газовых облаков, обращающихся по орбите в центре галактик, выявляется наблюдениями в радиодиапазоне, а также в оптических лучах. Наблюдения в рентгеновском диапазоне могут подтвердить повышенное выделение энергии, вызванное падением вещества внутрь черной дыры. Исследования в рентгеновских лучах в начале 1960-х годов начал работавший в США итальянец Риккардо Джаккони. Присужденная ему в 2002 году Нобелевская премия стала признанием его «новаторского вклада в астрофизику, что привело к открытию в космосе источников рентгеновского излучения».

Лебедь X-1: первый кандидат

Наша Галактика не застрахована от наличия объектов-кандидатов в черные дыры. К счастью, ни один из этих объектов не находится настолько близко к нам, чтобы представлять опасность для существования Земли или Солнечной системы. Несмотря на большое количество отмеченных компактных источников рентгеновского излучения (а это наиболее вероятные кандидаты для нахождения там черных дыр), у нас нет уверенности в том, что они на самом деле содержат черные дыры. Единственным среди этих источников, не имеющим альтернативной версии, является тесная двойная система Лебедь X-1, то есть наиболее яркий источник рентгеновского излучения, в созвездии Лебедь.

Массивные звезды

Эта система, орбитальный период которой составляет 5,6 суток, состоит из очень яркой голубой звезды большого размера (ее диаметре 20 раз превосходит солнечный, а масса - примерно в 30 раз), легко различимой даже в ваш телескоп, и невидимой второй звезды, масса которой оценивается в несколько солнечных масс (до 10). Расположенная на расстоянии 6500 световых лет от нас вторая звезда была бы отлично видна, если бы она была обычной звездой. Ее невидимость, производимое системой мощное рентгеновское излучение и, наконец, оценка массы заставляют большинство астрономов думать о том, что это - первый подтвержденный случай обнаружения звездной черной дыры.

Сомнения

Впрочем,есть и скептики. Среди них один из крупнейших исследователей черных дыр физик Стивен Хокинг. Он даже заключил пари с американским коллегой Килом Торном - ярым сторонником классификации объекта Лебедь X-1 как черной дыры.

Спор о сущности объекта Лебедь X-1 - не единственное пари Хокинга. Посвятив несколько девятилетий теоретическим исследованиям черных дыр, он убедился в ошибочности своих прежних представлений об этих загадочных объектах.. В частности, Хокинг предполагал, что вещество после падения в черную дыру исчезает навсегда, а с ним исчезает и весь его информационный багаж. Он был настолько в этом уверен, что заключил на эту тему в 1997 году пари с американским коллегой Джоном Прескйллом.

Признание ошибки

21 июля 2004 года в своем выступлении на конгрессе по теории относительности в Дублине Хокинг признал правоту Прескилла. Черные дыры не приводят к полному исчезновению вещества. Более того, они обладают определенного рода «памятью». Внутри них вполне могут храниться следы того, что они поглотили. Таким образом, «испаряясь» (то есть медленно испуская излучение вследствие квантового эффекта), они могут возвращать эту информацию нашей Вселенной.

Черные дыры в Галактике

Астрономы еще питают множество сомнений относительно наличия в нашей Галактике звездных черных дыр (подобных той, что принадлежит двойной системе Лебедь X-1); но в отношении сверхмассивных черных дыр сомнений гораздо меньше.

В центре

В нашей Галактике имеется минимум одна сверхмассивная черная дыра. Ее источник, известный под именем Стрелец А*, точно локализован в центре плоскости Млечного Пути. Его название объясняется тем, что это самый мощный радиоисточник в созвездии Стрелец. Именно в этом направлении расположены как геометрический, так и физический центры нашей галактической системы. Находящаяся на расстоянии около 26000 световых лет от нас сверхмассивная черная дыра, связанная с источником радиоволн Стрелец А*, обладает массой, которая оценивается примерно в 4 млн солнечных масс, заключенных в пространстве, объем которого сравним с объемом Солнечной системы. Ее относительная близость к нам (эта сверхмассивная черная дыра, без сомнения, ближайшая к Земле) стала причиной того, что в последние годы объект подвергся особенно глубокому исследованию при помощи космической обсерватории «Чандра». Выяснилось, в частности, что он также представляет собой мощный источник рентгеновского излучения (но не столь мощный, как источники в активных ядрах галактик). Стрелец А*, возможно, является «спящим» остатком того, что миллионы или миллиарды лет назад было активным ядром нашей Галактики.

Вторая черная дыра?

Впрочем, некоторые астрономы считают, что в нашей Галактике имеется еще один сюрприз. Речь идет а второй черной дыре средней массы, удерживающей вместе скопление молодых звезд и не позволяющей им упасть в сверхмассивную черную дыру, расположенную в центре самой Галактики. Как же может быть, чтобы на расстоянии меньше одного светового года от нее могло находиться звездное скопление возраста, едва достигшего 10 млн лет, то есть, по астрономическим меркам, очень молодое? По мнению исследователей, ответ заключается в том, что скопление родилось не там (среда вокруг центральной черной дыры слишком враждебна для звездообразования), но было «притянуто» туда благодаря существованию внутри него второй черной дыры, которая и обладает массой средних значений.

На орбите

Отдельные звезды скопления, притянутое сверхмассивной черной дырой, начали смещаться в сторону галактического центра. Однако вместо того чтобы рассеяться в космосе, они остаются собранными вместе благодаря притяжению второй черной дыры, расположенной в центре скопления. Масса этой.черной дыры может быть оценена на основании ее способности держать «на поводке» целое звездное скопление. Черная дыра средних размеров, видимо, совершает оборот вокруг центральной черной дыры примерно за 100 лет. Это означает, что продолжительные наблюдения в течение многих лет позволят нам ее «увидеть».

Несмотря на огромные достижения в области физики и астрономии, есть немало явлений, суть которых до конца не раскрыта. К таким явлениям принадлежат загадочные черные дыры, вся информация о которых носит лишь теоретический характер и не может быть проверена практическим путем.

Существуют ли черные дыры?

Еще до появления теории относительности астрономами была высказана теория о существовании черных воронок. После публикации теории Эйнштейна был пересмотрен вопрос гравитации и в проблеме черных дыр появились новые предположения. Увидеть этот космический объект нереально, ведь он поглощает весь свет, попадающий в его пространство. Ученые доказывают наличие черных дыр, опираясь на анализ движения межзвездного газа и траектории передвижений звезд.

Образование черных дыр ведет к изменению вокруг них пространственно-временных характеристик. Время будто сжимается под влиянием огромной гравитации и замедляется. Звезды, оказавшиеся на пути черной воронки, могут уклоняться от своего маршрута и даже менять направление движения. Черные дыры поглощают энергию своей звезды-двойника, чем также проявляют себя.

Как выглядит черная дыра?

Информация, касающаяся черных дыр, по большей части носит гипотетический характер. Ученые изучают их по их воздействию на пространство и излучению. Увидеть черные дыры во вселенной не представляется возможным, ведь они поглощают весь свет, попадающий в близлежащее пространство. Со специальных спутников было сделано рентгеновское изображение черных объектов, на котором виден яркий центр, являющийся источником излучения лучей.

Как образуются черные дыры?

Черная дыра в космосе является отдельным миром, который имеет свои уникальные характеристики и свойства. Свойства космических дыр обусловлены причинами их появления. Относительно появления черных объектов существуют такие теории:

  1. Они являются результатом коллапсов, происходящих в космосе. Это может быть столкновение крупных космических тел или взрыв сверхновых звезд.
  2. Они возникают вследствие утяжеления космических объектов при сохранении их размеров. Причина такого явления не определена.

Черная воронка – это объект в космосе, имеющий относительно небольшой размер при огромной массе. Теория черной дыры говорит, что каждый космический объект потенциально может стать черной воронкой, если в результате каких-то явлений он будет терять свои размеры, но сохранять массу. Ученые даже говорят о существовании множества черных микродыр – миниатюрных космических объектах с относительно большой массой. Такое несоответствие массы и размера приводит к усилению гравитационного поля и появлению сильного притяжения.

Что находится в черной дыре?

Черный таинственный объект можно назвать дырой лишь с большой натяжкой. Центром этого явления является космическое тело, имеющее повышенную гравитацию. Результатом такой гравитации становится сильное притяжение к поверхности этого космического тела. При этом образуется вихревой поток, в котором вращаются газы и крупицы космической пыли. Поэтому черную дыру правильнее называть черной воронкой.

Узнать на практике, что внутри черной дыры, невозможно, потому что уровень гравитации космической воронки не позволяет никакому объекту вырваться из зоны ее влияния. По мнению ученых, внутри черной дыры полная темнота, ведь кванты света исчезают в ней безвозвратно. Предполагается, что внутри черной воронки искажается пространство и время, законы физики и геометрии в этом месте не действуют. Такие особенности черных дыр предположительно могут приводить к образованию антивеществ, которые на данный момент не знакомы ученым.

Чем опасны черные дыры?

Иногда черные дыры описываются как объекты, поглощающие окружающие предметы, излучения и частицы. Такое представление неверно: свойства черной дыры позволяют ей впитывать лишь то, что попадает в зону ее влияния. Она может втягивать в себя космические микрочастицы и излучение, исходящее от звезд-двойников. Даже если планета находится вблизи черной дыры, она не будет поглощена, а продолжит двигаться по своей орбите.

Что будет, если попасть в черную дыру?

Свойства черных дыр зависят от силы гравитационного поля. Черные воронки притягивают к себе все, что попадает в зону их влияния. При этом изменяются пространственно-временные характеристики. Ученые, изучающие все о черных дырах, расходятся во мнении относительного того, что происходит с предметами в этой воронке:

  • одни ученые предполагают, что все предметы, попадающие в эти дыры, растягиваются или разрываются на куски и не успевают достичь поверхности притягивающего объекта;
  • другие же ученые утверждают, что в дырах искривляются все привычные характеристики, поэтому предметы там как бы исчезают во времени и пространстве. По этой причине черные дыры иногда называют воротами в иные миры.

Виды черных дыр

Черные воронки делятся по видам, исходя из способа их образования:

  1. Черные объекты звездных масс зарождаются в конце жизни некоторых звезд. Полное сгорание звезды и окончание термоядерных реакций приводит к сжатию звезды. Если же при этом звезда претерпит гравитационный коллапс, то сможет трансформироваться в черную воронку.
  2. Сверхмассивные черные воронки . Ученые утверждают, что сердцевиной любой галактики является сверхмассивная воронка, образование которой является началом появления новой галактики.
  3. Первичные черные дыры . Сюда могут относиться дыры различной массы, включая микродыры, образовавшиеся из-за расхождений в плотности материи и силе гравитации. Такие дыры – это воронки, образовавшиеся в начале зарождения Вселенной. Сюда же относятся такие объекты, как волосатая черная дыра. Отличаются эти дыры наличием лучей, похожих на волоски. Предполагается, что эти фотоны и гравитоны сохраняют часть информации, попадающей в черную дыру.
  4. Квантовые черные дыры . Появляются как результат ядерных реакций и живут непродолжительное время. Квантовые воронки представляют наибольший интерес, так как их изучение может помочь ответить на вопросы по проблеме черных космических объектов.
  5. Некоторые ученые выделяют такой вид космических объектов, волосатая черная дыра. Отличаются эти дыры наличием лучей, похожих на волоски. Предполагается, что эти фотоны и гравитоны сохраняют часть информации, попадающей в черную дыру.

Ближайшая черная дыра к Земле

Ближайшая черная дыра удалена от Земли на 3000 световых лет. Она называется V616 Monocerotis, или V616 Mon. Ее вес достигает 9-13 масс Солнца. Бинарный партнер этой дыры – звезда в полмассы Солнца. Еще одна относительно близкая к Земле воронка - Cygnus X-1. Она располагается от Земли в 6 тысячах световых лет и весит в 15 раз больше Солнца. Эта черная космическая дыра тоже имеет своего бинарного партнера, движение которого и помогает отследить влияние Cygnus X-1.

Черные дыры - интересные факты

Ученые рассказывают о черных объектах такие интересные факты:

  1. Если брать в расчет, что эти объекты являются центром галактик, то для поиска самой большой воронки следует обнаружить самую крупную галактику. Поэтому самая большая черная дыра во вселенной – воронка, находящаяся в галактике IC 1101 в центре скопления Abell 2029.
  2. Черные объекты на самом деле выглядят как разноцветные. Причина этого кроется в их радиомагнитном излучении.
  3. В середине черной дыры нет постоянных физических или математических законов. Все зависит от массы дыры и ее гравитационного поля.
  4. Черные воронки постепенно испаряются.
  5. Вес черных воронок может доходить до неимоверных размеров. Масса наибольшей черной дыры равняется 30 миллионам масс Солнца.

Бескрайняя Вселенная полна тайн, загадок и парадоксов. Несмотря на то, что современная наука сделала огромный скачок вперед в исследовании космоса, многое в этом бескрайнем мире остается непостижимым для человеческого мировосприятия. Нам достаточно много известно о звездах , туманностях, скоплениях и планетах. Однако на просторах Вселенной встречаются такие объекты, о существовании которых мы можем только догадываться. Например, о черных дырах нам известно крайне мало. Основные сведения и знания о природе черных дыр строятся на предположениях и догадках. Астрофизики, ученые-атомщики бьются над этим вопросом уже не один десяток лет. Что же такое черная дыра в космосе? Какова природа подобных объектов?

Говоря о черных дырах простым языком

Чтобы представить, как выглядит черная дыра, достаточно увидеть хвост уходящего в туннель поезда. Сигнальные фонари на последнем вагоне по мере углубления поезда в туннель, будут уменьшаться в размерах, пока совсем не исчезнут из поля зрения. Другими словами — это объекты, где в силу чудовищного притяжения исчезает даже свет. Элементарные частицы, электроны, протоны и фотоны не в состоянии преодолеть невидимый барьер, проваливаются в черную бездну небытия, поэтому такая дыра в пространстве и получила название — черная. Нет внутри нее ни малейшего светлого участка, сплошная чернота и бесконечность. Что находится по ту стороны черной дыры – неизвестно.

Этот космический пылесос обладает колоссальной силой притяжения и в состоянии поглотить целую галактику со всеми скоплениями и сверхскоплениями звезд, с туманностями и с темной материей в придачу. Каким образом это возможно? Остается только догадываться. Известные нам законы физики в данном случае трещат по швам и не дают объяснения происходящим процессам. Суть парадокса заключается в том, что в данном участке Вселенной гравитационное взаимодействие тел определяется их массой. На процесс поглощения одним объектом другого не оказывают влияния их качественный и количественный состав. Частицы, достигнув критического количества на определенном участке, входят в другой уровень взаимодействия, где гравитационные силы становятся силами притяжения. Тело, объект, субстанция или материя под воздействием гравитации начинает сжиматься, достигая колоссальной плотности.

Примерно такие процессы происходят при образовании нейтронной звезды , где звездная материя под воздействием внутренней гравитации сжимается в объеме. Свободные электроны соединяются с протонами, образуя электрически нейтральные частицы — нейтроны. Плотность этой субстанции огромна. Частица материи размером с кусок рафинада имеет вес в миллиарды тонн. Здесь уместным будет вспомнить общую теорию относительности, где пространство и время — величины непрерывные. Следовательно, процесс сжатия не может быть остановлен на полпути и поэтому не имеет предела.

Потенциально черная дыра выглядит как нора, в которой возможно существует переход из одного участка пространства в другой. При этом свойства самого пространства и времени меняются, закручиваясь в пространственно-временную воронку. Достигая дна этой воронки, любая материя распадается на кванты. Что находится по ту стороны черной дыры, этой гигантской норы? Возможно, там существует другое иное пространство, где действуют другие законы и время течет в обратном направлении.

В разрезе теории относительности теория черной дыры выглядит следующим образом. Точка пространства, где гравитационные силы сжали любую материю до микроскопических размеров, обладает колоссальной силой притяжения, величина которой возрастает до бесконечности. Появляется складка времени, а пространство искривляется, замыкаясь в одной точке. Поглощенные черной дырой объекты не в состоянии самостоятельно противостоять силе втягивания этого чудовищного пылесоса. Даже скорость света, которой обладают кванты, не позволяет элементарным частицам преодолеть силу притяжения. Любое тело, попавшее в такую точку, перестает быть материальным объектом, сливаясь с пространственно-временным пузырем.

Черные дыры с точки зрения науки

Если задаться вопросом, как образуются черные дыры? Однозначного ответа не будет. Во Вселенной достаточно много парадоксов и противоречий, которые невозможно объяснить с точки зрения науки. Теория относительности Эйнштейна позволяет только теоретически объяснить природу подобных объектов, однако квантовая механика и физика в данном случае молчат.

Пытаясь объяснить законами физики происходящие процессы, картина будет выглядеть следующим образом. Объект, образуется в результате колоссального гравитационного сжатия массивного или сверхмассивного космического тела. Этот процесс носит научное название — гравитационный коллапс. Термин «черная дыра» впервые прозвучал в научной среде в 1968 году, когда американский астроном и физик Джон Уиллер пытался объяснить состояние звездного коллапса. По его теории, на месте массивной звезды подвергнувшейся гравитационному коллапсу возникает пространственный и временной провал, в котором действует постоянно растущее сжатие. Все, из чего состояла звезда, уходит внутрь себя.

Такое объяснение позволяет сделать вывод, что природа черных дыр никоим образом не связана с процессами, происходящими во Вселенной. Все, что происходит внутри этого объекта, никак не отражается на окружающем пространстве при одном «НО». Сила гравитации черной дыры настолько сильна, что искривляет пространство, заставляя вращаться галактики вокруг черных дыр. Соответственно становится понятна причина, почему галактики принимают форму спиралей. Сколько понадобится времени на то, чтобы огромная галактика Млечный путь исчезла в бездне сверхмассивной черной дыры, неизвестно. Любопытен факт, что черные дыры могут возникать в любой точке космического пространства, там, где для этого созданы идеальные условия. Такая складка времени и пространства нивелирует те огромные скорости, с которыми вращаются звезды и перемещаются в пространстве галактики. Время в черной дыре течет в другом измерении. Внутри этой области никакие законы гравитации не поддаются интерпретации с точки зрения физики. Такое состояние называется сингулярностью черной дыры.

Черные дыры не проявляют никаких внешних идентификационных признаков, об их существовании можно судить по поведению других космических объектов, на которые воздействуют гравитационные поля. Вся картина борьбы не на жизнь, а на смерть происходит на границе черной дыры, которая прикрыта мембраной. Эта мнимая поверхность воронки называется «горизонтом событий». Все, что мы видим до этой границы, осязаемо и материально.

Сценарии образования черных дыр

Развивая теорию Джона Уиллера, можно сделать вывод, что тайна черных дыр скорее не в процессе ее формирования. Образование черной дыры возникает в результате коллапса нейтронной звезды. Причем масса такого объекта должна превосходить массу Солнца в три и более раз. Нейтронная звезда сжимается до тех пор, пока ее собственный свет уже не в состоянии вырваться из тесных объятий силы притяжения. Существует граничный предел в размере, до которого может сжиматься звезда, давая рождение черной дыре. Этот радиус называется гравитационным радиусом. Массивные звезды на финальной стадии своего развития должны иметь гравитационный радиус в несколько километров.

Сегодня ученые получили косвенные доказательства присутствия черных дыр в десятке рентгеновских двойных звездах. У рентгеновских звезд, пульсара или барстера нет твердой поверхности. К тому же их масса больше массы трех Солнц. Нынешнее состояние космического пространства в созвездии Лебедя – рентгеновская звезда Лебедь Х-1, позволяет проследить процесс образования этих любопытных объектов.

Исходя из исследований и теоретических предположений, сегодня в науке существует четыре сценария образования черных звезд:

  • гравитационный коллапс массивной звезды на финальном этапе ее эволюции;
  • коллапс центральной области галактики;
  • формирование черных дыр в процессе Большого взрыва;
  • образование квантовых черных дыр.

Первый сценарий является самым реалистичным, однако то количество черных звезд, с которым мы знакомы на сегодняшний день, превышает количество известных нейтронных звезд. Да и возраст Вселенной не настолько большой, чтобы такое количество массивных звезд смогло пройти полный процесс эволюции.

Второй сценарий имеет право на жизнь, и тому существует яркий пример – сверхмассивная черная дыра Стрелец А*, приютившаяся в центре нашей галактики. Масса этого объекта 3,7 массы Солнца . Механизм этого сценария схож со сценарием гравитационного коллапса с той лишь разницей, что коллапсу подвергается не звезда, а межзвездный газ. Под воздействием гравитационных сил происходит сжатие газа до критической массы и плотности. В критический момент материя распадается на кванты, образуя черную дыру. Однако эта теория вызывает сомнения, так как недавно астрономы Колумбийского университета выявили спутники черной дыры Стрелец А*. Ими оказалось множество мелких черный дыр, которые вероятно образовались другим способом.

Третий сценарий больше теоретический и связан с существованием теории Большого взрыва. В момент образования Вселенной часть материи и гравитационные поля претерпели флуктуацию. Другими словами, процессы пошли другим путем, не связанным с известными процессами квантовой механики и ядерной физики.

Последний сценарий ориентирован на физику ядерного взрыва. В сгустках материи в процессе ядерных реакций под влиянием гравитационных сил происходит взрыв, на месте которого образуется черная дыра. Материя взрывается внутрь себя, поглощая все частицы.

Существование и эволюция черных дыр

Имея приблизительное представление о природе столь странных космических объектов, интересно другое. Какие истинные размеры черных дыр, как быстро они растут? Размеры черных дыр определяются их гравитационным радиусом. Для черных дыр радиус черной дыры определяется ее массой и называется радиусом Шварцшильда. К примеру, если объект имеет массу равную массу нашей планеты, то радиус Шварцшильда в таком случае составляет 9 мм. Наше главное светило имеет радиус в 3 км. Средняя плотность черной дыры, образовавшейся на месте звезды массой 10⁸ масс Солнца, будет близкой к плотности воды. Радиус такого образования составит 300 млн. километров.

Вероятно, что такие гигантские черные дыры располагаются в центре галактик. На сегодняшний день известны 50 галактик, в центре которых находятся огромные временные и пространственные колодцы. Масса таких гигантов составляет миллиарды масса Солнца. Можно только представить, какой колоссальной и чудовищной силой притяжения обладает такая дыра.

Что касается мелких дырочек, то это мини-объекты, радиус которых достигает ничтожных величин, всего 10¯¹² см. Масса такой крошки составляет 10¹⁴гр. Подобные образования возникли в момент Большого взрыва, однако со временем увеличились в размерах и сегодня красуются в космическом пространстве в качестве монстров. Условия, при которых шло образование мелких черных дыр, ученые сегодня пытаются воссоздать в земных условиях. Для этих целей проводятся эксперименты в электронных коллайдерах, посредством которых элементарные частицы разгоняются до скорости света. Первые опыты позволили получить в лабораторных условиях кварк-глюонную плазму — материю, которая существовала на заре образования Вселенной. Подобные эксперименты позволяют надеяться, что черная дыра на Земле – дело времени. Другое дело, не обернется ли подобное достижение человеческой науки катастрофой для нас и для нашей планеты. Создав искусственно черную дыру, мы можем открыть ящик Пандоры.

Последние наблюдения за другими галактиками, позволили ученым открыть черные дыры, размеры которых превышают все мыслимые ожидания и предположения. Эволюция, которая происходит с подобными объектами, позволяет лучше понять, от чего растет масса черных дыр, каков ее реальный предел. Ученые пришли к выводу, что все известные черные дыры выросли до своих реальных размеров в течение 13-14 млрд. лет. Разница в размерах объясняется плотностью окружающего пространства. Если у черной дыры достаточно пищи в пределах досягаемости сил притяжения, она растет словно на дрожжах, достигая массы в сотни и тысячи солнечных масс. Отсюда и гигантские размеры таких объектов, расположенных в центре галактик. Массивное скопление звезд, огромные массы межзвездного газа являются обильной пищей для роста. При слиянии галактик, черные дыры могут сливаться воедино, образуя новый сверхмассивный объект.

Судя по анализу эволюционных процессов, принято выделять два класса черных дыр:

  • объекты с массой в 10 раз больше солнечной массы;
  • массивные объекты, масса которых составляет сотни тысяч, миллиарды солнечных масс.

Существуют черные дыры со средней промежуточной массой равной 100-10 тыс. масс Солнца, однако их природа до сих пор остается неизвестной. На одну галактику приходится примерно один такой объект. Изучение рентгеновских звезд позволило найти на расстоянии 12 миллионов световых лет в галактике М82 сразу две средние по массе черные дыры. Масса одного объекта варьируется в диапазоне 200-800 масс Солнца. Другой объект гораздо больше и имеет массу 10-40 тыс. солнечных масс. Судьба таких объектов интересна. Располагаются они вблизи звездных скоплений, постепенно притягиваясь к сверхмассивной черной дыре, расположенной в центральной части галактики.

Наша планета и черные дыры

Несмотря на поиски разгадки о природе черных дыр, научный мир беспокоит место и роль черной дыры в судьбе галактики Млечный путь и, в частности, в судьбе планеты Земля. Складка времени и пространства, которая существует в центре Млечного пути, постепенно поглощает все существующие вокруг объекты. Уже поглощены в черной дыре миллионы звезд и триллионы тонн межзвездного газа. Со временем дойдет очередь и до рукавов Лебедя и Стрельца, в которых находится Солнечная система, пройдя расстояние в 27 тыс. световых лет.

Другая ближайшая сверхмассивная черная дыра находится в центральной части галактики Андромеда. Это около 2,5 млн. световых лет от нас. Вероятно, до того времени, как наш объект Стрелец А* поглотит собственную галактику, следует ожидать слияния двух соседствующих галактик. Соответственно произойдет и слияние двух сверхмассивных черных дыр в одно целое, страшное и чудовищное по размерам.

Совершенно другое дело — черные дыры небольших размеров. Чтобы поглотить планету Земля достаточно черной дыры радиусом в пару сантиметров. Проблема заключается в том, что по своей природе черная дыра совершенно безликий объект. Из ее чрева не исходит никакое излучение, ни радиация, поэтому заметить столь загадочный объект достаточно трудно. Только с близкого расстояния можно обнаружить искривление фонового света, которое свидетельствует о том, что в этом районе Вселенной имеется дырка в пространстве.

На сегодняшний день ученые установили, что ближайшая к Земле черная дыра — это объект V616 Monocerotis. Чудовище расположено в 3000 световых лет от нашей системы. По своим размерам это крупное образование, его масса составляет 9-13 солнечных масс. Другим близким объектом, несущим угрозу нашему миру, является черная дыра Gygnus Х-1. С этим монстром нас разделяет расстояние в 6000 световых лет. Выявленные по соседству с нами черные дыры, являются частью бинарной системы, т.е. существуют в тесном соседстве со звездой, питающей ненасытный объект.

Заключение

Существование в космосе таких загадочных и таинственных объектов, какими являются черные дыры, безусловно, заставляет нас находиться на стороже. Однако все, что происходит с черными дырами, случается достаточно редко, если брать во внимание возраст Вселенной и огромные расстояния. В течение 4,5 млрд. лет Солнечная система пребывает в состоянии покоя, существуя по известным нам законам. За это время ничего подобного, ни искажения пространства, ни складки времени вблизи Солнечной системы не появилось. Вероятно, для этого нет подходящих условий. Та часть Млечного пути, в которой пребывает система звезды Солнце, является спокойным и стабильным участком космоса.

Ученые допускают мысль, что появление черных дыр не случайно. Такие объекты выполняют во Вселенной роль санитаров, уничтожающих излишек космических тел. Что же касается судьбы самих монстров, то их эволюция еще до конца не изучена. Существует версия, что черные дыры не вечны и на определенном этапе могут прекратить свое существование. Уже ни для кого не секрет, что такие объекты представляют собой мощнейшие источники энергии. Какая это энергия и в чем она измеряется – это другое дело.

Стараниями Стивена Хокинга науке была предъявлена теория о то, что черная дыра все-таки излучает энергию, теряя свою массу. В своих предположениях ученый руководствовался теорией относительности, где все процессы взаимосвязаны друг с другом. Ничего просто так не исчезает, не появившись в другом месте. Любая материя может трансформироваться в другую субстанцию, при этом один вид энергии переходит на другой энергетический уровень. Так, может быть, обстоит дело и с черными дырами, которые являются переходным порталом, из одного состояния в другое.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Из всех известных человечеству объектов, которые находятся в космическом пространстве, черные дыры производят самое жуткое и непонятное впечатление. Это ощущение охватывает практически каждого человека при упоминании черных дыр, несмотря на то, что о них человечеству стало известно уже более чем полтора столетия. Первые знания о данных явлениях были получены еще задолго до публикаций Эйнштейна о теории относительности. Но реальное подтверждение существования этих объектов было получено не так давно.

Конечно же, черные дыры по праву славятся своими странными физическими характеристиками, которые порождают еще больше загадок во Вселенной. Они с легкостью бросают вызов всем космическим законам физики и космической механики. Для того чтобы осознать все детали и принципы существования такого явления, как космическая дыра, нам нужно ознакомиться с современными достижениями в астрономии и применить фантазию, кроме того, придется выйти за рамки стандартных понятий. Для более легкого осознания и ознакомления с космическими дырами портал сайт подготовил много интересной информации, которая касается данных явлений во Вселенной.

Особенности черных дыр от портала сайт

Прежде всего, нужно отметить, что черные дыры не берутся из ниоткуда, они образуются из звезд, которые имеют гигантские размеры и массу. Кроме того, самой большой особенностью и уникальностью каждой черной дыры является то, что они обладают очень сильным гравитационным притяжением. Сила притяжения объектов к черной дыре превышает вторую космическую скорость. Такие показатели гравитации говорят о том, что с поля действия черной дыры не могут вырваться даже лучи света, поскольку они обладают значительно меньшей скоростью.

Особенностью притяжения можно назвать то, что оно притягивает все объекты, которые находятся в непосредственной близости. Чем больше объект, который проходит в близости черной дыры, тем большего влияния и притягивания он получит. Соответственно можно сделать вывод, что чем больше объект, тем сильнее его притягивает черная дыра, а для того, чтобы избежать подобного влияния космическое тело должно обладать очень высокими скоростными показателями передвижения.

Также можно с уверенность отметить, что во всей Вселенной нет такого тела, которое смогло бы избежать притяжения черной дыры, оказавшись в непосредственной близости, поскольку даже самый быстрый по скорости световой поток не может избежать этого влияния. Для осознания особенностей черных дыр отлично подходит теория относительности, выведенная еще Эйнштейном. Согласно этой теории гравитация способна влиять на время и искажение пространства. Также она гласит, что чем больше объект, находящийся в космическом пространстве, тем сильнее он тормозит время. В близости от самой черной дыры время как бы вовсе останавливается. При попадании космического корабля в поле действия космической дыры можно было бы наблюдать, как он с приближением замедлялся бы, а в конечном итоге и вовсе исчез.

Не стоит очень сильно пугаться таких явлений, как черные дыры и верить всей ненаучной информации, которая может существовать на данный момент. Прежде всего, нужно развеять самый распространенный миф о том, что черные дыры могут всасывать всю окружающую их материю и объекты, и при этом они увеличиваются и поглощают все больше и больше. Все это не совсем верно. Да, действительно, они могут поглощать космические тела и материю, но только те, которые находятся на определенном расстоянии от самой дыры. Кроме своей мощной гравитации, они мало чем отличаются от обычных звезд с гигантской массой. Даже когда наше Солнце превратится в черную дыру, оно сможет затянуть только объекты, расположенные на небольшом расстоянии, а все планеты так и останутся вращаться по привычным орбитам.

Обращаясь к теории относительности, можно сделать вывод, что все объекты с сильной гравитацией могут влиять на искривление времени и пространства. Кроме того, чем больше масса тела, тем и искажение будет сильнее. Так, совсем недавно ученым удалось увидеть это на практике, когда можно было созерцать другие объекты, которые должны были быть недоступны нашему взору из-за огромных космических тел таких, как галактики или черные дыры. Все это возможно за счет того, что проходящие рядом от черной дыры или другого тела световые лучи очень сильно изгибаются под влиянием их гравитации. Такой тип искажения позволяет ученым заглянуть значительно дальше в космическое пространство. Но при таких исследованиях очень сложно определить реальное местонахождение исследуемого тела.

Черные дыры не появляются из ниоткуда, они образовываются в результате взрыва сверхмассивных звезд. Причем для того чтобы сформировалась черная дыра, масса взорванной звезды должна быть как минимум в десять раз больше, чем масса Солнца. Каждая звезда существует за счет термоядерных реакций, которые проходят внутри звезды. При этом выделяется сплав водорода в процессе синтеза, но и он не может покинуть зону действия звезды, поскольку ее гравитация притягивает водород обратно. Весь этот процесс и позволяет существовать звездам. Синтез водорода и гравитация звезды – достаточно отлаженные механизмы, но нарушение этого баланса может привести к взрыву звезды. В большинстве случаев к нему приводят исчерпания ядерного топлива.

В зависимости от массы звезды возможны несколько сценариев их развития после взрыва. Так, массивные звезды образуют поле взрыва сверхновой звезды, причем большинство из них так и остаются позади ядра бывшей звезды, такие объекты астронавты называют Белыми Карликами. В большинстве случаев вокруг этих тел образуется газовое облако, которое удерживается гравитацией этого карлика. Возможен и иной путь развития сверхмассивных звезд, при котором полученная черная дыра будет очень сильно притягивать всю материю звезды к ее центру, что приведет к сильному ее сжатию.

Такие сжатые тела именуются как нейтронные звезды. В самых редких случаях после взрыва звезды возможно образование черной дыры в принятом нами понимании данного явления. Но чтобы была создана дыра, масса звезды должна быть просто гигантской. В этом случае при нарушении баланса ядерных реакций гравитация звезды просто сходит с ума. При этом она начинает активно коллапсировать, после чего становится только точкой в пространстве. Другими словами, можно сказать, что звезда как физический объект перестает существовать. Несмотря на то, что она исчезает, за ней образуется черная дыра с теми же показателями силы тяжести и массой.

Именно коллапсирование звезд и приводит к тому, что они полностью исчезают, а на их месте формируется черная дыра с теми же физическими свойствами, как и исчезнувшая звезда. Отличием становится только большая степень сжатия дыры, чем был объем звезды. Самой главной особенностью всех черных дыр является их сингулярность, которая и определяет ее центр. Эта область противостоит всем законам физики, материи и пространства, которые перестают существовать. Для осознания понятия сингулярности можно сказать, что это барьер, который называют горизонтом космических событий. Также она является внешней границей действия черной дыры. Сингулярность можно назвать точкой невозврата, поскольку именно там начинает действовать гигантская сила тяготения дыры. Даже свет, который пересекает этот барьер, не в силах вырваться.

Горизонт событий обладает таким притягивающим эффектом, который притягивает все тела со скоростью света, с приближением до самой черной дыры скоростные показатели еще больше увеличиваются. Именно поэтому все объекты, попавшие в зону действия этой силы, обречены на то, что их затянет дыра. Нужно отметить, что подобные силы способны видоизменять тело, попавшее в силу действия такого притяжения, после чего они протягиваются в тонкую струну, а потом и вовсе перестают существовать в пространстве.

Расстояние между горизонтом событий и сингулярностью может отличаться, это пространство названо радиусом Шварцшильда. Именно поэтому чем больше размер черной дыры, тем большим будет и радиус действия. К примеру, можно сказать, что черная дыра, которая была бы массой как наше Солнце, имела бы радиус Шварцшильда в три километра. Соответственно большие черные дыры имеют больший радиус действия.

Поиск черных дыр – достаточно сложный процесс, поскольку свет не может вырваться из них. Поэтому поиск и определение опираются только на косвенные доказательства их существования. Самым простым методом их нахождения, который используют ученые, является поиск их по нахождению мест в темном пространстве, если они обладают большой массой. В большинстве случаев астрономам удается находить черные дыры в двойных звездных системах или же в центрах галактик.

Большинство астрономов склонно считать, что в центре нашей галактики также существует сверхмощная черная дыра. Это утверждение порождает вопрос, сможет ли эта дыра поглотить все в нашей галактике? В действительности это невозможно, поскольку сама дыра имеет такую же массу, как и звезды, потому что она и создана из звезды. Тем более все расчеты ученых не предвещают никаких глобальных событий, связанных с этим объектом. Более того, еще миллиарды лет космические тела нашей галактики будут спокойно вращаться вокруг этой черной дыры без каких-либо изменений. Доказательством существования дыры в центре Млечного Пути может служить зафиксированные учеными рентгеновские волны. А большинство астрономов склонно считать, что черные дыры их активно излучают в огромном количестве.

Достаточно часто в нашей галактике распространены звездные системы, состоящие из двух звезд, причем зачастую одна из них может становиться черной дырой. В этом варианте черная дыра поглощает все тела на своем пути, при этом материя начинает вращаться вокруг нее, за счет чего формируется так называемый диск ускорения. Особенностью можно назвать то, что она увеличивает скорость вращения и приближается к центру. Именно материя, которая попадает в середину черной дыры, и излучает рентгеновское излучение, а сама материя при этом разрушается.

Двойные системы звезд являются самыми первыми кандидатами на статус черной дыры. В таких системах наиболее легко можно найти черную дыру, за счет объема видимой звезды можно просчитать и показатели невидимого собрата. В настоящее время самым первым кандидатом на статус черной дыры может стать звезда из созвездия Лебедя, которая активно излучает рентгеновские лучи.

Делая вывод из всего вышеуказанного о черных дырах можно сказать, что они не такие уж и опасные явления, конечно же, в случае непосредственной близости они являются самыми мощными из-за силы гравитации объектами в космическом пространстве. Поэтому можно сказать, что они особо ничем не отличаются от иных тел, основной их особенностью является сильное гравитационное поле.

Относительно назначения черных дыр было предложено огромное количество теорий, среди которых были даже абсурдные. Так, по одной из них ученые считали, что черные дыры могут порождать новые галактики. Данная теория опирается на то, что наш мир является достаточно благоприятным местом для зарождения жизни, но в случае изменения одного из факторов жизнь была бы невозможной. В силу этого сингулярность и особенности изменения физических свойств в черных дырах могут породить совершенно новую Вселенную, которая будет значительно отличаться от нашей. Но это лишь теория и достаточно слабая в силу того, что не существует никаких доказательств подобного воздействия черных дыр.

Что касается черных дыр, то они не только могут поглощать материю, но они также могут испаряться. Подобное явление было доказано несколько десятилетий тому назад. Это испарение может привести к тому, что черная дыра потеряет всю свою массу, а дальше и вовсе исчезнет.

Все это является самой малой частицей информации о черных дырах, которую Вы можете узнать на портале сайт. Также мы владеем огромным количеством интересной информации о других космических явлениях.