Самодельная гидроэлектростанция на водяном колесе. Самодельная гидроэлектростанция из старой стиральной машины Водяная турбина генератор своими руками

Интервью от Московского журналиста Андрея Полякова, любезно предоставившего нам свой материал, который из-за загруженности работой он не смог выставить у себя на сайте. Беседа кому-то может оказаться интересной, посему мы выложили её здесь, добавив фото и эскизы фигурировавшие на видео.

Беседа состоялась летом 2011 г.

  • Микро ГЭС из воздушного насоса (улитки).
  • Самодельный Шаговый Низкооборотистый генератор на постоянных магнитах, без редукторов и подшипников качения, при копеечных затратах.
  • Турбина из Дерева. Неужели реально? Эскизы.
  • Как Передать механическую энергию за 100 - 5.000 метров без электричества?
  • Как, из чего сделать генератор в экстремальных условиях отключения сетей?
  • Фильм «Деревня Водяных Мельниц» - намёк о Гармонии с Природой.
  • Гравитация - источник энергии. Схема. Это просто.

Эраст, на каком этапе сейчас работа над вашей самодельной микро ГЭС? Скоро ли наступит момент первого испытания?

Мы её пока только делаем. Делаем что называется «в час по чайной ложке» из-за обилия забот которые тоже не отодвинешь. На 95% закончены сварочные работы. Иначе говоря «машина» уже есть. Остаётся облепить мелочами, а с ними, как известно, больше возни чем с массивом железа. Это и зачистка, покраска и сверловка, клёпка, сборка на болты, установка магнитов, обмоток с полупроводниками.

Что представляет собой это изделие вообще и каков его принцип работы.

Проще говоря это обычный воздушный насос центробежного типа, размером с 1.2 метра, каких по предприятиям и колхозам было и есть превеликое множество, в простонародье или на сленге техников называемый «улитка». Корпус его немножко перекроен, раскрыто шире выходное отверстие и его работа, уже в качестве микроГЭС или гидротурбины, предусмотрена как бы задом наперёд. Т. е. вход и выход для воздуха меняются местами, выходное окно стало входом-раструбом для набегающего водяного потока реки. Корпус расположен лёжа, что очень выгодно на мелкоте и на малых речушках. Выходит вода вдоль вала, снизу и сверху из двух отверстий, вырезанных в обеих деках. Вал имеет нержавеющие наконечники.

Крыльчатка от такого же насоса несколько большего диаметра приварена к валу и вставлена в корпус этого бывшего насоса. При такой компоновке образуется центростремительный вихрь, который вращает крыльчатку в полтора-два раза быстрее. Тем более что этому ускорению помогают ещё и закрылки закреплённые внутри, перенаправляя поток на крыльчатку, под более выгодным углом, да ещё и с образованием вихрей в зазорах между собой и закрылками крыльчатки. Таким образом центробежный воздушный насос стал гидротурбиной центростремительного типа, мощностью предположительно 0,2 – 0,5 КВт. И при ещё большей силе течения может быть «натянется» и на 1КВт.

Фото 2.

В чём смысл этой переделки и что мы имеем на выходе?

Мы имеем источник энергии, сделанный весьма малыми затратами денег. Одной средней пенсии хватает по себестоимости на её изготовление. Мощность её, предположительно, должна составить около 200-500 Ватт, из расчета на питание рации, дежурного освещения, зарядки батарей, видео-аудио аппаратуры, компьютера и т. п. Она транспартабельна, устанавливается и снимается одним – двумя человеками. Более того, это пример реализации на всего одной оси вращения, в двух узлах берёзовых подшипников. Всё охлаждается и смазывается водой. Безо всяких редукторов, шкивов и ремней, без высокотехнологичных подшипников требующих смазку из нефтепродуктов и защиту от воды всевозможными сальниками. Берёзу можно пропитать или сварить в масле, олифе, канифоли, воске, парафине. Пропитать любым приемлемым водоотталкивающим составом. Именно в этом закладывалась основная особенность.

На крыльчатке должно крепиться кольцо 600 мм в диаметре, с тридцатью постоянными магнитами. ЭДС (Электродвижущая сила) возникает в шести или девяти обмотках залитых смолой, для изоляции от воды. Получается, по подобию шаговых двигателей, низкооборотистый многофазный (6-ти или 9-ти фазный) генератор. Потом через диодные мосты всё выводится на два провода кабеля и уже на берегу выпрямляется окончательно до постоянного тока. А там уж «делай с ним что хош».

То есть речь идёт о том, что эта штука должна работать в любое время года?

Да. Хоть подо льдом. И почти круглый год. Но видимо надо будет чистить от наносов травы, веточек и вынимать из подо льда перед весенним ледоходом. Осенняя шуга, - мелкий лёд при первых морозах, тоже конечно ей не нужен. В общем пару месяцев в году выпадает из года эксплуатации.

На каких водах? На малых реках или каких? То есть на небольшом течении?

Она рассчитана на течение около 5-ти 8-ми км/час. Не ниже. А здесь именно такой диапазон на участках до 3-х 5-ти метров глубиной на стрежне.

А как назвать его «небольшое»? Вон, как постоишь у Казыра, - такая мощь несётся, аж дух захватывает. Так и хочется с ним «договориться», а потом как-нибудь запрячь…

Фото 3.

Понятно. На примере этой микроГЭС могут быть созданы более мощные?

Да. Более мощные можно создать. Но я уже вообще не ходил бы по этому пути. У меня есть заготовка от ещё большего насоса, рассчитанная на 1-3КВт. Корпус и его «родная» крыльчатка. Привёз когда-то для той же цели. Но сейчас подумываю, а стоит ли его кроить? Потому что я хочу прекратить делать сварные конструкции.

И то, что мы сейчас делаем поменьше, на 200-500 Вт. делается только для того, что бы показать, что это возможно и оно работает. Потому что некоторые люди и в это не очень-то верят. А дальше, если уж повторять такую вещь, то в дереве. Целиком из древесины.

Основная фишка-то в чём. Что бы показать что это делается, ну практически бесплатно. Мы рассчитывали так, что бы можно было даже постоянные магниты от бытовой аппаратуры поставить, сняв со счётчиков или с электромагнитных реле (пускателей) трансформаторное железо, откуда угодно смотав провода, подобрав по сечению и количеству витков, намотав, залив битумом. И это будет работать. Не будет магнитов – сделаем обмотки возбуждения. Если понадобится – даже из бревна турбину сделаем. Выберем поровнее, засверлим бурами или перьевыми свёрлами, вобьём лопатки на клиньях (под нужным углом) и получим механический привод.

Идей и готовых наработок полно. Даже качающуюся лопасть можем соорудить и передать энергию возвратно-поступательным движением на берег простым оцинкованным (а то и алюминиевым) проводом от воздушного провода с высоковольтных столбов. А там использовать на движение пилорамной рамки или преобразовать во вращение органов станка. Такое успешно использовалось в прошлых веках и в Голландии, например, сохранилось до сих пор, по прошествии 350-400 лет.

Фото 4.

Отдельная тема это использование ветров. При всём их непостоянстве они обладают большой силой и используя их большую энергию в механическом виде можно совершить огромное количество работы всего за час – два.

Всё поставлено на идею «как сделать без денег и покупок». В самом критическом случае. И не потому что сейчас невозможно, а потому что однажды может стать невозможно. Отключи рубильник – наступает экстрим. А рубильник на ладан дышит. Вон, наша «Шуша» уже давала знак. Засуетились, забегали, а потом успокоились. Почти все. Но знак-то был!

Тут прозвучало слово «дерево», но все скажут «как будет дерево работать в воде? Оно же всё-таки размокнет?».

Отличный вопрос! И вполне естественный при нашем воспитании в обществе в котором мы родились и выросли. Но представьте что мы родились в 17-м веке. У нас возник бы такой вопрос? И в голову бы не пришло! Там всё на дереве работало. И в воде и в огне и в литейках и в кузницах…

Фото 5.

Корабли по 30 лет в морях кидало – болтало. Японцы вон (и китайцы) до сих пор в провинциях воду, для мытья в деревянной бочке греют на открытом огне, подобно школьным опытам нашего детства (когда в бумажном стаканчике воду кипятили). Сами водяные колёса, приводившие в действие практически все станки и оборудование, ведь были сделаны из дерева и работали в воде. Бочки без воды рассыхаются и начинают течь. Есть свои законы физики и «секреты» столярной сборки, которые не просто обыгрывают намокание и набухание, а даже используют это для увеличения прочности всей конструкции. В воде и вихрях многие породы не гниют и способны даже металл пережить.

Рис. 6.

В добавок, если уж мы упоминаем о вихрях, то полезно знать, что они хорошо работают именно в устройствах из диамагнетиков. Т. е. из немагнитного материала. При чём дерево именно наилучший вариант. Хороша и обожженная глина, камень. Именно они способны катализировать процессы в воде. Посмотрите на реки. Именно с этими материалами и соприкасается вода. И если быть внимательным и наблюдательным, то можно увидеть казалось бы сверхъестественное поведение воды в Природе.

Но дело даже не в этом. Это всё интересно, но пока не главное. Мы ведь рассматриваем тему с точки зрения так называемых экстремальных условий, это пресловутое слово ЧС. Нас предстоящие обстоятельства не спросят, хотим мы в дереве конструировать или считаем это старьём. Они просто оставят нас с одним деревом и несколькими заначками железа по дворам. Вот и всё. Смоет клизма все наши мечты - заблуждения. Но ведь надо ж реально понимать с чем мы останемся.

Надо смело признать что мы больны технократией. И она нам на погибель. Особенно в эти времена. Ну например смыло там или сдуло наши мега-игрушки обвалилось там чего-нибудь. Ну ведь реально же это происходит в наши дни. То там, то сям. Рушится, тонет, горит…

Земля живая. Она хочет Гармонии. Она ломает наши игрушки. Они мешают ей жить и грозят её уничтожить, пока мы с серьёзными лицами бегаем по её поверхности со всякими стрелялками, и делаем большие бабахи, то под водой, то под её кожей. Да измучили мы Маму Землю своими глупыми играми! Особенно своими негативными эмоциями, агрессией.

И вот близится её Гармония. Ух! И ей хорошо… Тишина. Космос звучит. А для нас ЧС. Экстремальные условия посреди Великой Гармонии. Абсурд да и только.

Но я прекрасно понимаю что донести эти вещи большинству людей просто невозможно. Слишком изменена психология восприятия. Я от привычного мышления лечился около 10-ти лет.

Фото 7.

Посмотрев короткометражный фильм Акиры Куросавы «Деревня водяных мельниц» (из серии «Сны») я очень вдохновился. До глубины души прочувствовал КАК ЭТО ГАРМОНИЧНО! И только через 10 лет я стал понимать простые слова, сказанные старцем. А тогда мне ещё предстояло «лечиться» от желаний всё делать из покупных сварных труб.

Фото 8.

Мне очень повезло в жизни. Реальность преподносила мне трудные уроки. К созданию этой нашей микроГЭСки я шёл лет восемь. Железо собрал (пока колхозы развалились, а их останки ещё не успели пропить). И долго не мог приступить, что бы сделать. Не было возможностей. А никаких. Такое томление идеи заставляло отточить всё до мелочей. Научиться не требовать от Реальности и от людей. Не привязываться к результату.

Позднее всё же приступил, пожертвовав очень многим в своей жизни. Об этом мало кто что-нибудь знает. Продвинул % на 70. И опять перерыв на полтора - два года. И всё это подвело к простой мысли, что если бы сразу сделал турбину в дереве, то давно бы уже сделал. На собственном домашнем верстаке. Это всё помогло мне осмыслить что только так вообще-то и надо. В связи с предстоящими условиями. Год я маялся с мыслью «а как же это должно быть устроено?». Долго не находил решения.

Однажды лёг на коечку и стал медитировать совсем на другую тему. Как же, думаю, эти древние греки размягчали базальт и отливали из него статуи? Помню, друг рассказывал.

«Снял» кое-что. Потом, раз уж пошла такая «пруха» и о турбинке из дерева задался мыслёй. Крутил, вертел… И Оооо! Ах! Тут и «увидел» её во всей красе. И так вдохновился что действительно увидел её красивой. Это красиво!

На электронном рисунке изображена схема сборки. Это конечно жалкое подобие воображаемого, но всё же думаю будет понятно.

Рис. 9.

Абсолютно по подобию насоса улитки. Две деки из щитов соединённых в шип-паз окантованы набором рейки, словно бондарная клёпка. Стянуто к двум основным несущим балкам двумя обручами из проволоки – шестёрки или поясьями из той же древесины, втянуто клиньями или стяжками для проволоки. В обоих деках отверстия под крыльчатку по подобию всё тех же водяных колёс. Вставляется в них этот самый ротор на две балки с подшипниками. Всё древесина. Только валы ротора из болтов с шестигранной головкой и нарезкой резьбы подобной саморезам по дереву. Это (без подробностей) и есть турбина из древесины столярной сборки с элементами бондарной сборки, всего лишь одна из нескольких, ментальных наработок. Кое что уже сконструировано и в модели. Отработаны узлы и соединения.

Фото 10.

Я уже упоминал в прошлой беседе о периоде условной нищеты. Полезная вещь нищета. Она заставляет ДУМАТЬ. При очередном переезде я привёз с собой крыльчатку от ещё большего воздушного насоса (улитки) 250-300 кг. И стал задумываться, как же мне теперь с ним справиться. Вал 1м. длиной и 100 мм. в диаметре, с 90 кг. весом надо было выдернуть огромным съёмником, которого нет, проточить на токарном, и вставить с другой стороны, приварив ещё детали.

Я опять упёрся в деньги и заказы (потому что сам точу, но своего станка нет и доступа тоже поблизости нет) упёрся в токарные работы, перевозки и т. д. И вот тут я окончательно понял что занимался бессмыслицей и теперь мне это не нужно. Тратил столько времени и денег на перевозки этого ротора столько раз, только ради собственного прозрения. Таскался с ним столько лет, пытаясь превратить в водяное колесо или турбину и только теперь «дошло до жирафа». И глубже стал осмысливать технологии 17-18-х веков с позиции технологий времён перехода Земли. Понял что всё это наше железо по большому счёту не нужно. Оно тянет за собой сварку, со всеми проблемами подключения, нехватки мощностей в посёлках и деревнях, расходными электродами, дисками, токарные работы, возню, а по сути ДЕНЬГИ.

Имел бы я деньги тогда – не было б сделано нужных выводов и прозрений. Если бы мне сейчас предложили прожить заново тот нищенский период, но уже с деньгами – я бы отказался. Иначе я продал бы свои прозрения. У меня тогда смогли бы их купить. Но они дорогого стоят. Их деньгами не измеришь. Я просто прожил уроки, которые ещё предстоят всем, кто считает что деньги будут всегда.

И даже раз уж мы все-таки создали некоторые мастерские - мы можем сделать это и в железе сообща, на нашем оборудовании, скинувшись своими пенсиями – заработками. Но это всё равно определённая сложность. Она не показывает как ЖИТЬ БЕЗ ДЕНЕГ и жить без технократии. А вот перед собой я и поставил цель (я сознательно себя развернул в эту сторону) - собрать возможную информацию, адаптировать и раздав её пошире, показать как можно без технократии что-то сделать. Буквально из того, что ОСТАНЕТСЯ У НАС В НАШЕМ РАСПОРЯЖЕНИИ и не будет другого. Когда наступит час «Ч».

А позднее, ещё глубже исследовав тему предстоящих событий на планете, сформировал в систему или концепцию техники и технологий переходного периода названную «Сталкер 2012-17-30». С долей шутки расшифровка аббревиатуры такова:

Система Технологий Армагеддона Людской Концепции Единого Развития.

А Сталкер – проводник в неизвестное, запредельное, аномальное, что и ожидает нас всех. И если Сталкер – проводник, значит Сталкер-технологии помогут нам «пройти» период перехода Земли.

Мы надеемся конечно её довершить. Чуда никакого нет. Всё очень просто.

По времени когда это произойдёт?

Теперь уж будем ждать весны. Может быть успеем и раньше. Вырежем полметровый лёд бензопилой и будем её «удить». Но я бы не загадывал сроков и ничего не обещал, тем более. Мало что из наших сроков сбывается. Будем жить процессом а не результатом.

И ещё могу добавить: Мы работаем с ней только потому, что однажды её начали. По сути интерес у нас давно уже направлен в другие области.

Давай коснёмся этой области как раз. О чём и хотелось поговорить.

Да. Это гравитационные колёса или так называемый принцип несбалансированного колеса, что является самой простой и доступной альтернативой для любого двора или хозяйства. Вопрос спорный конечно, для людей не посвящённых, а особенно приверженцев ортодоксально-научному подходу. Но те, кто ищут в этой области, давно поняли что гравитация может совершать полезную работу. И убедились на практике.

Возвращаясь к теме предыдущей беседы, догмат О НЕВОЗМОЖНОСТИ создания устройства с кпд выше 100%, или двигателя, который сам себя крутит ничего казалось бы не потребляя, да ещё и производит работу, - это догмат ложный. И те, кто не знают о нём либо не верят в него – зачастую успешно всё делают и у них всё работает.

В конце второго тысячелетия стало появляться множество контактной (ченнелинговой) информации, всевозможных упоминаний и упреждений (в книгах и прочей литературе) о том, что потоки информации о «новых» источниках свободной энергии скоро просто хлынут через край в тысячи и миллионы умов, и подавлять их станет просто невозможно. Миллионы людей будут получать информацию на сознательный уровень и делать в реале «свои» изобретения. Дезинформация, тоже не сможет остановить эту по истине гигантскую волну. Именно это и происходит в наши дни.

Вполне легально существует множество сайтов где наряду с дезинформацией есть полно гравитационных колёс точь-в-точь похожих на те, что подавались как неработающие в книжечках типа занимательная физика Яна Перельмана (или иных авторов). Но они работают. И их сотни видов и принципов. Предостаточно видео. Закрывать на это глаза, доказывая себе что это невозможно, это обман, монтаж, компьютерная графика, - это прятать голову в песок.

Гравитационные колёса – это самая мелкая «пешка», которой можно пожертвовать отдав нам, что бы сохранить остальные «фигуры». Есть разработки посерьёзнее. И тут можно вспомнить фразу из Нового Завета: «Но ведь и псы питаются крохами со стола господ их» (в ином месте детей). Голодный разве будет харчами перебирать. Если голоден по настоящему, то вся гордость куда девается. Дали кусок и спасибо. Чего ж нам привередничать.

Вот ВСЕГО лишь один пример: (YouTube - Chas Campbell - Gravity Wheel)

Фото 11.

Один хороший американский дядечка сделал гравитационное колесо около 3-х – 3,5 м. диаметром. Внизу редукторы - цепной, ременной, шкивы и маховики. От них вращается электрогенератор. Ролик очень «пережатый», но несмотря на низкое качество нам удалось понять что это тип несбалансированного колеса с управляемым смещением центра тяжести. И естественно белым диском закрыто устройство механизма которое управляет грузами. Но видно что бледно бордового цвета грузы, вероятно с небольшим люфтом сопряжённые между собой, слева ближе к центру, а справа дальше, почти на периферии. Вверху они, по мере вращения, поднимаются, и на этапе движения внизу тоже поднимаются. Т. е. вверху отходят от центра, а внизу подтягиваются к нему. На белые линии между внешним ободом и внутренним диском внимание обращать не надо. Это элементы усиления, для жёсткости.

Грубо говоря грузы описывают окружность эксцентрично центру вращения самого колеса. Вращение идёт по часовой стрелке. Дядечка включает нагрузку 2,5 – 3,5 КВт на электроинструмент. Это между 3-мя и 4-мя КВт механической мощности. Не так важно на каких (качающихся или нет) штангах подвешены грузы. Важен механизм управления ими.

Поначалу механизм управления виделся несколько сложным, но работоспособным. А позднее мы пришли к выводу что всё гораздо проще.

Рис. 12.

Вот рисунок из журнала «Сделай сам» лет 15-ти – 20-ти назад, в статье о водяных колёсах для собственного хозяйства. Такие старые добрые водяные колёса с поворотными плицами (лопастями) стали применяться после простых, пароходных водяных колёс со статичными нерегулируемыми лопастями, для того что б лопатки входили под более выгодным углом, меньше хлопали о воду впустую, в общем их кпд выше простых. Им уж лет сто или больше.

Рис. 13

И если слегка повернуть рисунок, убрать ненужные нам детали и добавить свои, то вот что получается. Прямая подсказка из прошлого. Можно представить две ступицы со спицами, разнесённые на небольшое расстояние, имеющие общий обод. И через обе ступицы проходит коленчатый вал, средняя шейка которого отнесена от основной оси (коренных шеек) на расстояние 0,5 от разницы положения грузов на радиусе. На этой средней шейке и крепится третья, управляющая, ступица. От неё идут тяги (толкатели, штанги) к узлам сопряжения грузов (подвижного сопряжения, с люфтом, т.к. точки А сходятся и расходятся. Одна из штанг должна быть соединена со ступицей жёстко, остальные качаться.

Вот собственно и весь механизм. Он очень прост, что не удаётся понять многим. На этом возникает множество споров. В сознании не помещается установка что это просто устроено. «А! Просто? – Не может быть!» Дескать, должно быть сложно. И отвергается. На самом деле «всё гениальное просто» исходит из вот таких вещей. Не примитивно, а просто.

Примечательно что по «случайному» стечению обстоятельств (а случайностей, как говорят мудрые, не бывает) рисунок Гравитационного колеса попал под номер 13. Это что значит? Мистика, Рок, Чертовщина?

Это Мистика, но далека от рока.
«13″ - НЕ имеет никакого отношения к чертям и прочему, куда приписывают это люди, которым с детства вдалбливали такое отношение к числу «13″.

«13″ не резонирует и не пропорционируется ни с какими численностями, размеренностями и частотами вибраций этого измерения.

ОНО МЕЖДУ. Т. е. оно символизирует переход, переходное состояние. Это как «Тон - Полутон» на клавиатуре, в музыке, в цвете, в звуке. Так что «13″ - число ПЕРЕХОДА. Всё так как надо.

Это Знак! (Смеёмся) Пора ПЕРЕХОДИТЬ на Колёса. (Опять смех…)

А как ещё перейти в будущее? С ОБЕСТОЧЕННОЙ розеткой в зубах что ли?..

Вернёмся к турбине. Значит Вот такую штуку вы можете сделать? Без привлечения больших всяких средств. Это же всё-таки дерево, насколько я понимаю.

Да, в том-то и дело что мы хотим пойти по пути, как не привлекать никаких средств. Всё что мы можем привлечь это то, что можно не привлекать. Это просто может ускорить работу. Не более того. Может быть вообще ничего и не привлечём. Но будем ли делать? - Посмотрим. Может ещё что-то лучшее найдём.

Потому что пока мы наскоками «делали» турбину – мы её переросли. Шутка ли, год – полтора перерывов. Время идёт, турбина стоит. Мы невольно общаемся, советуемся, познаём новое. Пока доживём до светлого момента взяться за это, может быть и его перерастём.

Мне кажется надо что-то всё таки доводить до конца.

Вот мы турбину и доводим. Это не просто, но мы в шутку договорились, - работаем в «стиле ретро». Мы шутим друг с другом – представляете, летаем на тарелках себе, и тут захотелось, «а давай парусник построим или яхту, настоящую деревяшку. Пройдёмся, вдохнём свежего ветра, передряг, болтанку. Как когда-то. В прошлой жизни». И работаем с турбиной, думая о другом уже. Иначе те, кто ждёт от нас турбину и вложились, - могут не понять нас, если мы бросим. Тут уж стараемся ради отношений, а не ради лучшего результата.

Ведь основной смысл в том, что нас спасут прежде всего доверительные добрые отношения, бескорыстная помощь как в родной семье, каким бы количеством мы не пробовали это реализовать. Иначе, если каждый сам за себя - не спасут нас никакие железяки и деревяшки, сколько бы мы их не наделали и не назапасали. Вот за этими всего лишь несколькими словами стоит главное. Всего одно упоминание, а жизнь зависит именно от этого.

Ну вот вы сделаете турбину. Конечно она опять даст вам мысль, но я думаю вы доведёте её до конца. На какой принципиально новый этап можно выйти с такими гравитационными штуками .

Ну что такое 3,5 киловатта в собственном хозяйстве? Больше по сути-то и не нужно. Больше это уже замашки чрез меру. Любой станок столярный потребляет порядка 3-х КВт. Это электрической мощности. А если мы вырезаем звено «генератор – провода – двигатель», вот так вот, «клац» и вырезали. И напрямую механическую передачу сделали. Может быть вариаторы даже свои. И потерь даже меньше. Выход больше. Наш столярный станок, сделанный как угодно, особенно если сделан по технологиям 17-го века, будет работать от этой мощности. Этого достаточно что бы обеспечить всё хозяйство. Попеременно включай то одно то другое и хватит. Мы конечно не говорим о обязательном присутствии только лишь электрических плиток и чайников с утюгами. Природный огонь гораздо больше здоровья даёт в пищу, чем весь этот хлам. Разве что как исключение или запасное дополнение. А на свет так вообще мелочи энергии нужны.

Сделаем выводы: В принципе объединив эти штуки в некую систему, отдельно взятое хозяйство может быть энерго-замкнутым, само себя обслуживать, скажем при реке какой-то…

Или без реки.

Да без реки. И не нужны эти огромные подстанции, ненужно это всё разгонять. Как я понял из сказанного, это может сделать практически любой человек, который более – менее соображает. К какому-то уже давно изобретённому колесу, вот есть инженер, есть люди которые это готовы сделать. Всё это быстро делается и восполняется независимо, из материалов от Природы. Т. е. мы во всяких катаклизмах ничего не теряем т. к. электромеханизмы не выйдут из строя.

Да. Да. Мы рассматриваем именно момент жизни в экстремальных условиях. Мы не ставим сейчас задачу сделать альтернативу централизованному электроснабжению. Нам просто надо выжить. Управленческие круги прекрасно сделали себе своё будущее. Правильно? Они себе сделали всё что считается нужным для собственного спасения. Мы тоже имеем право сделать что-то для собственного спасения. Нужна связь, освещение, минимально видео, аудио аппаратура (если она ещё продолжит работать) и механика, станки. Надо строить, делать материалы, технику альтернативную. Мы хотим жить. Нам ведь дано такое право?

Вопрос качества жизни. Как именно жить?

Независимо от потрясений системы. Ведь всякий (если не слепой) видит эти потрясения.

То есть ты с оптимизмом смотришь на цифру 111, которая усиленно развивается в 2011-м году, поставлена новая дата квантового эволюционного скачка. Либо 11. 11. 11. Либо 05. 11. 11. И что символ спасения 111 – это автобус, который ходит по маршруту Таяты – Каратуз, под номером 111:-)

Стечение обстоятельств многое подсказывает. Но я особо не залипаю… Может быть то, что мы пришли к новой информации и имеем новый опыт, это и проявление всех этих знаков.

(Пример реализации берёзовых подшипников на гончарном станке в 2006 году.

Фото 14.

Бесплотинная всесезонная гидроэлектростанция

Предлагается бесплотинная всесезонная гидроэлектростанция (БВГЭС), которая предназначена для выработки электроэнергии без сооружения плотины за счет использования энергии самотечного потока.

За счет изготовления различных типоразмеров под разные скорости течения, а также каскадного монтажа установки БВГЭС могут использоваться как в малых хозяйствах так и для промышленного производства электроэнергии, особенно в местах, удаленных от ЛЭП.

Конструктивно ротор ГЭС устанавливается вертикально, высота ротора от 0,25до2,5м…Фиксация конструкции на реках с ледоставом производится на дне русла, а в открытом (незамерзающем русле) __ на закрепленном катамаране.

Мощность установки пропорциональна площади лопасти и скорости течения в кубе. Зависимость мощности, получаемой на валу БВГЭС от ее размеров и скорости течения, а также оценочная стоимость гидроагрегата представлена в следующей таблице:

Мощность БВГЭС, кВт в зависимости от скорости потока и размеров установки

Срок окупаемости установки не превышает 1 года. Опытный образец БВГЭС прошел испытания на натурном водном полигоне.

В настоящее время имеется техническая документация для производства промышленных образцов по техническим условиям заказчика.

Напорные микро-и малые ГЭС

Гидроагрегаты для малых ГЭС предназначены для эксплуатации в широком диапазоне напоров и расходов с высокими энергетическими характеристиками.

МикроГЭС — надежные, экологически чистые, компактные, быстроокупаемые источники электроэнергии для деревень, хуторов, дачных поселков, фермерских хозяйств, а также мельниц, хлебопекарен, небольших производств в отдаленных горных и труднодоступных районах, где нет поблизости линий электропередач, а строить такие линии сейчас и дольше и дороже, чем приобрести и установить микроГЭС.

В комплект поставки входят: энергоблок, водозаборное устройство и устройство автоматического регулирования.

Имеется успешный опыт эксплуатации оборудования на перепадах уже существующих плотин, каналов, систем водоснабжения, и водоотведения промышленных предприятий и объектов городского хозяйства, очистных сооружений, оросительных систем и питьевых водоводов. Более 150 комплектов оборудования поставлено заказчикам в различные регионы России, страны СНГ, а также в Японию, Бразилию, Гватемалу, Швецию и Латвию.

Основные технические решения, использованные при создании оборудования, выполнены на уровне изобретений и защищены патентами.

1. МИКРОГИДРОЭЛЕКТРОСТАНЦИИ

с пропеллерным рабочим колесом
— мощностью до 10 кВт (МГЭС-10ПР) на напор 2,0-4,5 м и расход 0,07 — 0,14 м3/с;
— мощностью до 10 кВт (МГЭС-10ПР) на напор 4,5-8,0 м и расход 0,10 — 0,21 м3/с;
— мощностью до 15 кВт (МГЭС-15ПР) на напор 1,75-3,5 м и расход 0,10 — 0,20 м3/с;
— мощностью до 15 кВт (МГЭС-15ПР) на напор 3,5-7,0 м и расход 0,15 — 0,130м3/с;
— мощностью до 50 кВт (МГЭС-50ПР) на напор 4,0-10,0 м и расход 0,36 — 0,80 м3/с;

с диагональным рабочим колесом
— мощностью10- 50 кВт (МГЭС-50Д) на напор 10,0-25,0 м и расход 0,05 — 0,28 м3/с;
— мощностью до100кВт (МГЭС-100Д) на напор 25,0-55,0 м и расход 0,19 — 0,25 м3/с;

2. ГИДРОАГРЕГАТЫ ДЛЯ МАЛЫХ ГЭС

Гидроагрегаты с осевыми турбинами мощностью до 1000 кВт;
-гидроагрегаты с радиально-осевыми турбинами мощностью до 5000 кВт;
-гидроагрегаты с ковшовыми турбинами мощностью до 5000 кВт;

СРОКИ ПОСТАВКИ

МикроГЭС10кВт; 15кВт поставляется в срок до 3 месяцев после подписания контракта.
МикроГЭС 50кВт; поставляется в срок до 6 месяцев после подписания контракта.
МикроГЭС 100кВт; поставляется в срок до 8 месяцев после подписания контракта.
Гидроагрегаты поставляется в срок от 6 до 12 месяцев после подписания контракта.

Специалисты фирмы готовы помочь Вам определить оптимальный вариант установки микро-и малых ГЭС, выбрать оборудование для них, оказать помощь в монтаже и пуске гидроагрегатов, а также обеспечить сервисное обслуживание оборудования в
процессе его эксплуатации.

СТОИМОСТЬ ОБОРУДОВАНИЯ

Микро-ГЭС российского производства

Внешний вид

Микро-ГЭС 10 кВТ

Микро-ГЭС 50 кВт

ИнжИнвестСтрой

Мини ГЭС. Микрогидроэлектростанции

Малая гидроэлектростанция или малая ГЭС (МГЭС) – гидроэлектростанция, вырабатывающая сравнительно малое количество электроэнергии и состоящая из гидроэнергетических установок с установленной мощностью от 1 до 3000 кВт.

Микро-гидроэлектростанция предназначена для преобразования гидравлической энергии потока жидкости в электрическую для дальнейшей передачи сгенерированной электроэнергии в энергосистему.

Под термином микро подразумевается, что данная гидроэлектростанция устанавливается на малых водных объектах – небольших речках или даже ручьях, технологических протоках или перепадах высот систем водоподготовки, а мощность гидроагрегата не превышает 10 кВт.

МГЭС разделяют на два класса: это микро-гидроэлектростанции (до 200 кВт) и мини-гидроэлектростанции (до 3000 кВт). Первые применяются в основном в домохозяйствах, и на небольших предприятиях, вторые – на более крупных объектах.

Для владельца загородного дома или небольшого бизнеса, очевидно больший интерес представляют первые.

Исходя из принципа действия, микро-гидроэлектростанции разделяют на следующие типы:

Водяное колесо . Это колесо с лопастями, установленное перпендикулярно поверхности воды и наполовину в неё погруженное. В процессе работы вода давит на лопасти и заставляет вращаться колесо.

С точки зрения простоты изготовления и получения максимального КПД с минимальными затратами, эта конструкция хорошо работает.

Поэтому часто применяется и на практике.

Гирляндная мини-ГЭС . Представляет собой перекинутый с одного берега реки на другой трос с жестко закрепленными на нем роторами. Поток воды вращает роторы, а от них вращение передаётся на трос, один конец которого соединен с подшипником, а второй – с валом генератора.

Недостатки гирляндной ГЭС: большая материалоемкость, опасность для окружающих (длинный подводный трос, скрытые в воде роторы, перегораживание реки), низкий КПД.

Ротор Дарье .

Это вертикальный ротор, который вращается за счет разности давлений на его лопастях. Разница давлений создается за счет обтекания жидкостью сложных поверхностей. Эффект подобен подъемной силе судов на подводных крыльях или подъемной силе крыла самолета. Фактически, МГЭС данной конструкции идентичны одноименным ветрогенераторам, но располагаются в жидкостной среде.

Ротор Дарье сложен в изготовлении, в начале работы его нужно раскрутить.

Но он привлекателен тем, что ось ротора расположена вертикально и отбор мощности можно производить над водой, без дополнительных передач. Такой ротор будет вращаться при любом изменении направления потока. Как и у его воздушного собрата, КПД ротора Дарье уступает КПД МГЭС пропеллерного типа.

Пропеллер .

Это имеющий вертикальный ротор подводный «ветряк», который в отличие от воздушного, имеет лопасти минимальной ширины всего в 2 см. Такая ширина обеспечивает минимальное сопротивление и максимальную скорость вращения и выбиралась для наиболее часто встречающейся скорости потока – 0.8-2 метра в секунду.

Пропеллерные МГЭС , также как и колесные, просты в изготовлении и обладают сравнительно высоким КПД, их частое применение этим и обусловлено.

Классификация Мини ГЭС

Классификация по вырабатываемой мощности (области применения) .

Вырабатываемая микро ГЭС мощность определяется сочетанием двух факторов, первый это напор воды, поступающей на лопасти гидротурбины, которая приводит в действие вырабатывающий электроэнергию генератор, и второй фактор – расходом, т.е.

объемом воды, проходящем, через турбину за 1 секунду. Расход является определяющим фактором при отнесении ГЭС к определенному типу.

По вырабатываемой мощности МГЭС подразделяются на:

  • Бытовые мощностью до 15 кВт: используются для обеспечения электроэнергией частных домовладений и ферм.
  • Коммерческие мощностью до 180 кВт: питают электроэнергией небольшие предприятия.
  • Промышленные мощностью свыше 180 кВт: генерируют электроэнергию на продажу, либо энергия передается на производство.

Классификация по конструкции


Классификация по месту установки

  • Высоконапорные — более 60 м;
  • Средненапорные — от 25 м;
  • Низконапорные — от 3 до 25 м.

Данная классификация подразумевает, что электростанция работает на разных частотах вращения, и для ее механической стабилизации принимается ряд мер, т.к.

скорость потока зависит от напора.

Составные части Мини ГЭС

Электрогенерирующая установка малой ГЭС состоит из турбины, генератора и системы автоматического управления. Часть элементов системы аналогичны для систем солнечной генерации или ветряной генерации. Основные элементы системы:

  • Гидротурбина с лопатками, соединённая валом с генератором
  • Генератор .

    Мини гидроэлектростанция (ГЭС) для дома

    Предназначен для выработки переменного тока. Присоединяется к валу турбины. Параметры генерируемого тока быть относительно нестабильны, однако ничего похожего на скачки мощности при ветряной генерации не происходит;

  • Блок управления гидротурбиной обеспечивает пуск и останов гидроагрегата, автоматическую синхронизацию генератора при подключении к энергосистеме, контроль режимов работы гидроагрегата, аварийную остановку.
  • Блок балластной нагрузки , предназначенный для рассеивания неиспользуемой потребителем на данный момент мощность, позволяет избежать выхода из строя электрогенератора и системы контроля и управления.
  • Контроллер заряда/ стабилизатор : предназначен для управления зарядом аккумуляторных батарей, контроля поворота лопастей и преобразования напряжения.
  • Банк АКБ : накопительная ёмкость, от размера которой зависит продолжительность функционирования в автономном режиме питаемого ею объекта.
  • Инвертор , во многих гидрогенерирующих системах применяются инверторные системы. При наличии банка АКБ и контроллера заряда, гидросистемы мало чем отличаются от других систем, применяющих ВИЭ.

Мини ГЭС для частного дома

Рост тарифов на электроэнергию и отсутствие достаточных мощностей, делают актуальными вопросы о применение бесплатной энергии возобновляемых источники в домашних хозяйствах.

По сравнению с другими источниками ВИЭ, мини ГЭС представляют интерес, так как при равной мощности с ветряком и солнечной батареей они способны выдать за равный промежуток времени гораздо больше энергии.

Естественное ограничение на их применение является отсутствие реки

Если возле вашего дома протекает небольшая река, ручей или имеют место перепады высот на озерных водосбросах, то значит у вас имеются все условия для установки мини ГЭС. Потраченные на её приобретение деньги быстро окупятся – вы будете в любое время года обеспечены дешёвой электроэнергией, независимо от погодных условий и иных внешних факторов.

Основным показателем, который указывает на эффективность использования МГЭС является скорость потока водоема.

Если скорость меньше 1 м/с, то необходимо принять дополнительные меры по его разгону, например, сделать обводной канал переменного сечения или организовать искусственный перепад высот.

Преимущества и недостатки микрогидроэнергетики

К преимуществам мини гэс для дома можно отнести:

  • Экологическая безопасность (с оговорками для рыб-мальков) оборудования и отсутствие необходимости затопления больших площадей с колоссальным материальным ущербом;
  • Экологическая чистота получаемой энергии.

    Отсутствует влияние на свойства и качество воды. Водоемы можно использовать и для рыбохозяйственной деятельности, и как источники водоснабжения населения;

  • Низкую стоимость получаемой электроэнергии, которая в разы дешевле вырабатываемой на ТЭС;
  • Простоту и надёжность применяемого оборудования, и возможность его работы в автономном режиме (как в составе, так и вне сети электроснабжения).

    Вырабатываемый ими электрический ток соответствует требованиям ГОСТа по частоте и напряжению;

  • Полный ресурс работы станции — не менее 40 лет (не менее 5 лет до капитального ремонта);
  • неисчерпаемость используемых для выработки энергии ресурсов.

Основной недостаток микро-гэс это относительная опасность для обитателей водной фауны, т.к. вращающиеся лопатки турбин, особенно в скоростных потоках, могут представлять угрозу для рыб или мальков.

общая информация

Микрогидроэлектростанция (Micro HPP) предназначена для обеспечения электроснабжения потребителя, изолированного от энергосистемы.

Полнота поставки микро-ГЭС приведена в таблице 1

Условия эксплуатации:

— температура воздуха, 0 ° C

— в точке питания от -10 до +40;

— в месте расположения электрических шкафов от 0 до +40;

— высота над уровнем моря, м до 1000; (При установке микро-ГЭС на высоте более 1000 м максимальная мощность должна быть ограничена)

— относительная влажность воздуха в месте расположения электрических шкафов не превышает 98% при t = + 250 ° C.

Гарантийный срок для микроГЭС 1 год с даты его запуска, но не более 1,5 лет с даты отправки, возведение контроля и ввод в эксплуатацию работы с участием компании и соблюдение правил транспорта, хранения и эксплуатации экспертов.

Полная поставка микро-ГЭС

Таблица 1

технические данные

Спецификации MicroHP приведены в таблице 2

Таблица 2

параметр

Голова (нетто), м

Расход воды, м3 / с

Выходная мощность, кВт

Скорость вращения, об / мин

Напряжение, В

Текущая частота, Гц

Диаметр диска, мм

Диаметр подачи, мм

Требования к сети и нагрузке потребителя (нагрузка определяется как процент от фактического поступления на микро-ГЭС):

— характеристика местного, четырехфазного, трехфазного;

— мощность каждого двигателя,% не более 10;

Общая мощность двигателя, если установлены дополнительные компенсационные конденсаторы,% не более 30.

ДИЗАЙН

Блок питания предназначен для выработки электроэнергии и состоит из гидравлической турбины и асинхронного двигателя, который используется в качестве генератора.

Он предназначен для поглощения избыточной активной мощности микро-ГЭС. BNN — это шкаф, внутри которого расположены термоэлектрические нагреватели.

Устройство автоматического управления предназначено для управления и защиты привода. Он обеспечивает возбуждение асинхронного генератора и автоматическое управление производимым напряжением и частотой.

UAR обеспечивает защиту от перегрузки, перенапряжения и коротких замыканий

Устройство подачи воды выполнено в виде сетевого ящика, внутри которого имеется шланг подачи воды с закрывающим корпусом.

Устройство подачи воды сконструировано таким образом, что плавающие остатки не входят в привод.

Полные, монтажные и присоединительные размеры показаны на рисунке 1.

требования к установке

Для работы микроэлектростанции наличие давления (разница в уровнях воды) является предварительным условием (см. Рисунок 2).

Полноэкранная гидроэлектрическая плотина

Голова может быть получена из-за разницы в водяных знаках между:

— две реки;

— озеро и река;

— на той же реке, из-за выравнивания кривой.

Давление также возможно при строительстве плотины.

На рисунке 2 показана установка микро HP в соответствии со схемой конструкции барьера. Для создания давления на турбину вдоль реки, которая имеет множество склонов и порогов, установлен выходной трубопровод.

Небольшая каменная плотина рассеивается, чтобы увеличить давление.

Трубопровод должен обеспечивать воду для установки с минимальной потерей головки.

Длина трубопровода определяется местными условиями.

Перед блоком питания входной и основной клапаны, необходимые для запуска и остановки микро HPW, должны быть установлены на трубопроводе.

Рис. 1
В общем, размеры монтажа и подключения Micro HPP 10Pr.
1 — привод,
2 — блочная балластная нагрузка BBN,
3 — Автоматическое устройство управления UAR

Когенерационные установки малой мощности (обзор)

Когенерационные установки для индивидуальных домов — микро-ТЭЦ, «Микро-CHP (microCHP )» – аббревиатура от “heat and power combined ” (комбинирование тепла и электричества) – это установка, предназначенная для отопления индивидуального жилья) — одно из наиболее интересных направлений развития отопительной техники.

Микро-ТЭЦ (microCHP ) уже нашли тысячи пользователей и войдут в каталоги производителей в ближайшие годы.

В выпускаемых и проектируемых конструкциях реализуются различные технические решения — от традиционного двигателя внутреннего сгорания (двигатель Отто), до паровых турбин и поршневых двигателей, а также двигателя внешнего сгорания Стирлинга. Продвигая данное оборудование, производители приводят аргументы как экономического, так и экологического характера: высокий (более 90 %) совокупный КПДмикро-ТЭЦ обеспечивает снижение затрат на энергоснабжение и объем вредных выбросов, в частности углекислого газа, в атмосферу.

Компания Senertec GmbH, входящая в Вахi Group, реализовавшая к настоящему времени порядка полутора десятка тысяч установок Dachs (Барсук) с двигателем внутреннего сгорания.

Электрическая мощность — от 5 кВт, тепловая — от 12,5 до 20,5. Senertec предлагает энергоцентр для индивидуального дома, а при использовании нескольких модулей и крупного коммерческого объекта. Кроме компактного когенерационного модуля он включает в стандартном исполнении буферный накопитель емкостью до 1000 л со смонтированным на нем тепловым пунктом, объединяющим все элементы обвязки, необходимые для отопления и ГВС.

Дополнительно имеется также внешний конденсационный теплообменник. Различные модели установок Dachs работают на природном, сжиженном газе, дизельном топливе.

Имеется модель Dachs RS, созданная для работы на биодизельном топливе из рапсового масла. Ориентировочная стоимость газовой модели — 25 тыс. евро.

МикроТЭЦ (Mini-BHKW) ecopover немецкой компании PoverPlus Technologies (входит в Vaillant Group) уже продается на европейском рынке.

Её электрическая мощность модулируется в диапазоне от 1,3 до 4,7, тепловая — в диапазоне от 4,0 до 12,5 кВт. Суммарный КПД установки превышает 90 %, топливом для нее служит природный или сжиженный газ.

Ориентировочная стоимость модели — 20 тыс. евро.

В конце прошлого года компанией Otag Vertribes выпущена пилотная партия напольной газовой микроТЭЦ lion ®- Powerblock электрической мощностью 0.2-2,2, тепловой — 2,5-16,0 кВт.

В ней применен паровой двухцилиндровый двигатель со сдвоенным свободно движущимся поршнем: пар поочередно поступает то в левый, то в правый цилиндр, приводя в движение рабочий поршень.

Парогенератор аппарата состоит из наддувной горелки и стального змеевика; температура пара — 350 °С, давление — 25-30 бар. Его конденсация осуществляется непосредственно в аппарате.

Как ожидается, lion ® на пеллетах будет доступна апреля 2010 года.

Компания Microgen (Великобритания), один из лидеров в производстве мини-ТЭЦ , впервые разработала двигатель Стирлинга настолько маленького размера, что его можно встроить в котёл автономной системы отопления.

Компанией Вахi Heating UK было объявлено о намерении вывести в 2008 г. на рынок Великобритании компактную (в настенном исполнении) микроТЭЦ электрической мощностью 1, тепловой — до 36 кВт. Установка разрабатывалась совместно с компанией Microgen Energy и представляет собой сочетание созданного ею компактного однопоршневого двигателя Стирлинга с конденсационным котлом Вахi.

Модель оснащена двумя горелками: первая — наддувная модуляционная -обеспечивает работу электрогенератора и получение 15 кВт тепловой мощности, вторая -удовлетворяет дополнительную потребность объекта в тепле. Прототип установки был представлен на выставке ISН-2007.

Microgen, в сотрудничестве с голландской компанией-поставщиком природного газа Gausine и De Dietrich Remeha Group , производящим котлы Remeha , разрабатывает комплексное решение для отопления и производства электричества.

Группа De Dietrich-Remeha планирует производить и продавать настенный конденсационный котел со встроенным двигателем Стирлинга . Он уже экспонировался на выставках ISН-2007, 2009. Котел будет выпускаться в одно- и двух-контурном исполнениях. Некоторые технические характеристики котла: Его тепловая мощность составит 23 кВт , во втором случае — 28 кВт ; электрическая мощность — 1 кВт ; тепловая мощность Stirling – 4.8 кВт , КПД при 40/30°C – более 107%, низкие выбросы CO2 и NOx, уровень шума – менее 43 дб(A) на 1 м.

Габариты: 900x420x450 мм.

Самое главное преимущество котла HRE состоит в том, что часть его высокой производительности до 107% (благодаря технологии конденсации) используется для выработки электричества. Стоимость электричества, а также выбросы вредных веществ снижены на 65% по сравнению с тепловыми электростанциями на традиционном топливе.

Для среднего жилища котел “Remeha-HRE” производит 2500 – 3000 кВт в год, что составляет 75% от среднего потребления, тем самым экономится примерно 400 евро в год. При отоплении и производстве электроэнергии на 20 % сокращаются выбросы вредных веществ. В Голландии тестируются 8 котлов. В настоящий момент для более масштабного тестирования запускаются еще 120 котлов. Коммерческое производство предусмотрено начать в 2010 году.

В Японии более 30.000 домовладельцев установили микро-ТЭЦ Honda с тихими, эффективными двигателями внутреннего сгорания, размещенными в гладком металлическом корпусе.

Автоматизированные газогенераторные установки KOHLER® производства США мощностью 13 кВА, предназначенные для использования в жилых домах.

Они обладают оптимальной компактностью и отменной шумоизоляцией.

Газовые генераторы предназначены для наружной установки и не требуют особого помещения. Для их работы пригоден как природный магистральный газ, так и сжиженный газ в баллонах или газгольдерах.

Система противоаварийной автоматики делает их использование безопасным и комфортным.

Данное оборудование позволяет наиболее эффективно решать следующие, увы, нередкие проблемы с электроснабжением, встающие перед собственниками загородных домов:

  • Сеть хорошая, мощности хватает, но иногда случаются перебои электроснабжения
  • Сеть слабая, перегруженная, сильные «просадки» напряжения, частые отключения
  • Недостаточно выделенной электроснабжающей организацией мощности
  • Сети нет вообще

У Вас никогда не будет недостатка в энергии!

Вашему дому нужна энергия.

Генераторные установки KOHLER® сделаны с профессиональным качеством, но спроектированы для домашнего использования, чтобы Вы могли продолжать свои занятия и наслаждаться комфортом даже во время отключения электроэнергии. Генераторные установки KOHLER® компактны, обладают шумовой изоляцией и включаются автоматически, если произошло отключение электричества, обеспечивая продолжение нормальной жизни в доме и абсолютное душевное спокойствие.

Будьте уверены в Вашей генераторной установке KOHLER®.

Она начнет работу, если произойдет отключение электричества, неважно, дома Вы или нет, и обеспечит Ваш дом электроэнергией, например, для того, чтобы:

  • Продолжили работать холодильники и морозильные камеры.
  • Функционировали кондиционеры, системы отопления и сигнализации.
  • Функционировали дренажные насосы, морозозащитные системы и т.д.
  • Обеспечить энергией Вашу компьютерную систему.
  • Обыденная жизнь продолжалась без потерь.

Генераторные установки KOHLER® устанавливаются стационарно вне стен дома и включаются автоматически для выработки энергии, если энергоснабжение от сети прекращается.

  • Надежное электроснабжение.

    Сбои в электроснабжении могут привести к поломке электрического оборудования (плазменные дисплеи, холодильники с электронным управлением температурой, компьютеры и т.д.).

    Гидроэлектростанции в России

    Генераторные установки KOHLER® обеспечивают резервной электроэнергией, которая соответствует европейским стандартам для жилых помещений. Генераторная установка KOHLER® не испортит дорогостоящее электронное оборудование!

  • Лучшая звуковая изоляция. Генераторные установки KOHLER® работают практически бесшумно, сохраняя комфортные условия для Вас и Ваших соседей. Уровень шума при работе не выше 65 децибел на расстоянии 7 м, что соответствует шуму обычного бытового кондиционера.
  • Быстрый запуск.

    Генераторные установки KOHLER® за несколько секунд восстанавливают электроснабжение. Они обладают автоматической системой еженедельного тестирования для поддержания установки в рабочем состоянии при редком использовании.

  • Топливо. Генераторные установки KOHLER® пригодны для работы на жидком газе пропан или природном газе, а также на дизельном топливе.

    Газовые генераторные установки имеют низкий уровень эмиссии, что делает их более безопасными с экологической точки зрения, работают бесшумно и требует менее частого технического обслуживания.

    Выбор за Вами.

  • Качество KOHLER®. KOHLER® является признанной международной группой компаний с почти 90-летним опытом производства генераторных установок для обеспечения резервной энергией. Первая установка была собрана в 1920 году.

Характеристики газогенератора SDMO RES 13

Электростанции и генераторы

На главную

Малые гидроэлектростанции обычно делятся на два типа: «мини» — обеспечивают единицу мощности до 5000 кВт, а «микро» — в диапазоне от 3 до 100 кВт. Использование гидроэлектростанций таких мощностей для России не ново, но хорошо забытое старое: в 50-е и 60-е годы действовали тысячи малых гидроэлектростанций.

В настоящее время их количество почти не достигает сотен штук. Между тем, постоянный рост цен на органическое топливо приводит к значительному увеличению стоимости электроэнергии, доля которой в производственных издержках составляет 20% и более. В связи с этим небольшая гидроэлектростанция получила новую жизнь.

Современная гидроэнергетика по сравнению с другими традиционными видами электроэнергии является наиболее эффективным и экологически безопасным способом производства электроэнергии.

Малая гидроэлектростанция продолжается в этом направлении. Малые электростанции позволяют сохранять природный ландшафт, окружающую среду не только во время фазы эксплуатации, но и в процессе строительства.

Мини-гидроэлектростанция 10-15-30-50 кВт

В будущем отрицательное влияние на качество воды не оказывает: полностью сохраняет первоначальные природные свойства.

В реках рыбных консервов вода может использоваться для водных видов растений. В отличие от других экологически чистых возобновляемых источников энергии, таких как солнце, ветер, небольшие гидроэлектростанции практически не зависят от погодных условий и могут обеспечить стабильное снабжение экономичных потребителей электроэнергией. Еще одним преимуществом небольшой энергии является экономия.

В то время, когда природные источники энергии — нефть, уголь и газ — истощаются, постоянный прирост дороже, использование дешевых, доступных возобновляемых источников энергии, особенно малых, позволяет производить дешевую электроэнергию. Кроме того, строительство объектов малых ГЭС дешево и быстро окупается.Так, строительство небольшой ГЭС с установленной мощностью около 500 кВт, стоимость строительных работ составляет около 14,5-15,0 млн рублей.

В комбинированном столе вводятся в эксплуатацию проектная документация, строительство оборудования, строительство и монтаж малых ГЭС на 15-18 месяцев. Высокая частота электроэнергии от ГЭС составляет не более 0,45-0,5 рубля за 1 кВтч, в 1, Это в пять раз ниже, чем затраты на электроэнергию, фактически проданные энергосистемой.

Кстати, в следующем году или двух годах электроэнергетические системы намерены увеличить в 2-2,2 раза, поэтому затраты на строительство будут погашены через 3,5-5 лет. Реализация такого проекта с точки зрения окружающей среды не повредит окружающей среде.

Кроме того, следует отметить, что реконструкция, ранее вычитаемая из эксплуатации небольшой гидроэлектростанции, обойдется в 1,5-2 раза дешевле.

Многие российские научные и производственные организации и компании занимаются проектированием и разработкой оборудования для таких ГЭС.

Одним из крупнейших является межотраслевое научно-техническое объединение «ИНСЕТ» (Санкт-Петербург). Специалисты INSET разработали и запатентовали оригинальные технические решения для автоматизированных систем управления для малых и микро-ГЭС. Использование таких систем не требует постоянного присутствия обслуживающего персонала на объекте — гидравлический блок надежно работает в автоматическом режиме. Система управления может быть реализована на основе программируемого контроллера, который позволяет визуально контролировать параметры гидравлического блока на экране компьютера.

Гидравлические установки для малых и микрогидроэлектростанций производят MNTO «встроенный», предназначенный для работы в широком диапазоне потоков и давлений с высокими энергетическими свойствами и изготовленных с помощью пропеллерной, радиальной и осевой лопастей турбины.

Объем поставки включает, как правило, турбину, генератор и автоматическое управление гидравлическим блоком. Скорости потока всех турбин основаны на методе математического моделирования.

Малая энергия является наиболее эффективным решением энергетических проблем для районов, относящихся к районам децентрализованного электроснабжения, что составляет более 70% территории России. Обеспечение энергии для отдаленных регионов и нехватка энергии требуют значительных затрат.

И здесь далеко не полезно использовать возможности существующей федеральной энергетической системы. Экономический потенциал в России значительно выше, чем потенциал возобновляемых источников энергии, таких как ветер, солнечная энергия и биомасса, вместе взятые.В национальной энергетической программе развивается компания «ИНСЕТ» «Концепция развития и объектов схема размещения малых гидроэлектростанций на территории Республики Тыва », согласно которой в этом году будет введена в эксплуатацию небольшая гидроэлектростанция в селе Кызыл-Хая.

В настоящее время гидроэлектростанции INSET работают в России (Кабардино-Балкария, Башкортостан), Содружестве Независимых Государств (Беларусь, Грузия), а также в Латвии и других странах.

Экологически чистая и экономичная мини-энергия давно привлекает внимание иностранцев.

Micro INESET работает в Японии, Южной Корее, Бразилии, Гватемале, Швеции, Польше.

Бесплатное электричество - мини ГЭС своими руками

Если у Вашего жилища протекает река или даже небольшой ручей, то с помощью самодельной мини ГЭС Вы можете получить бесплатную электроэнергию. Возможно это будет не очень большое пополнение бюджета, но осознание того, что у Вас есть своя собственная электроэнергия - стоит гораздо дороже.

Ну а если, например на даче, нет центрального электроснабжения - то даже небольшие мощности электроэнергии будут просто необходимы. И так, для создания самодельной гидроэлектростанции необходимо как минимум два условия - наличие водяного ресурса и желание.

Если и то и другое присутствует, то то первое, что нужно сделать – это измерить скорость потока реки.

Сделать это очень просто - бросаете в реку веточку и замерьте время, в течении которого она проплывет 10 метров. Поделив метры на секунды, вы получите скорость течения в м/с. Если скорость меньше 1 м/с, то продуктивной мини ГЭС не получится.

В этом случае можно попробовать увеличить скорость потока искусственно заузив русло или сделав небольшую плотину, если имеете дело с не большим ручьем.

Для ориентира, можно использовать соотношение между скоростью потока в м/с и мощностью снимаемой электроэнергии с вала винта в кВт (диаметр винта 1 метр).

Данные экспериментальные, в реальности полученная мощность зависит от многих факторов, но для оценки подойдет. Так:

  • 0.5 м/с – 0.03 кВт,
  • 0.7 м/с – 0.07 кВт,
  • 1 м/с – 0.14 кВт,
  • 1.5 м/с – 0.31 кВт,
  • 2 м/с – 0.55 кВт,
  • 2.5 м/с – 0.86 кВт,
  • 3 м/с -1.24 кВт,
  • 4 м/с – 2.2 кВт и т.д.

Мощность самодельной мини ГЭС пропорциональна кубу скорости потока.

Как уже указывалось, если скорость течения недостаточная, попробуйте ее искусственно увеличить, если это конечно возможно.

Типы мини-ГЭС

Существует несколько основных вариантов самодельных мини гидроэлектростанций.


Это колесо с лопастями, установленное перпендикулярно поверхности воды.

Колесо погружено в поток меньше чем наполовину. Вода давит на лопасти и вращает колесо. Существуют также колеса-турбины со специальными лопатками, оптимизированными под струю жидкости. Но это достаточно сложные конструкции скорее заводского, чем самодельного изготовления.


Это ротор с вертикальной осью вращения, используемый для генерации электрической энергии.

Вертикальный ротор, который вращается за счет разности давлений на его лопастях. Разница давлений создается за счет обтекания жидкостью сложных поверхностей. Эффект подобен подъемной силе судов на подводных крыльях или подъемной силе крыла самолета. Эта конструкция была запатентована Жорж Жан-Мари Дарье, французским авиационным инженером в 1931 году. Также часто используется в конструкциях ветрогенераторов.

Гирляндная гидроэлектростанция состоит из легких турбин - гидровингроторов, нанизанных и жестко закрепленными в виде гирлянды на тросе, переброшенном через реку.

Один конец троса закрепляется в опорном подшипнике, второй - вращает ротор генератора.

Мини-ГЭС - гидроэнергоблок Ленева

Трос в этом случае играет роль своеобразного вала, вращательное движение которого передается к генератору. Поток воды вращает роторы, роторы вращают трос.


Также заимствован из конструкций ветровых электростанций, такой себе «подводный ветряк» с вертикальным ротором. В отличие от воздушного, подводный пропеллер имеет лопасти минимальной ширины. Для воды достаточно ширины лопасти всего в 2 см. При такой ширине будет минимальное сопротивление и максимальная скорость вращения.

Такая ширина лопастей выбиралась для скорости потока 0.8-2 метра в секунду. При больших скоростях, возможно, оптимальны другие размеры. Пропеллер движется не за счет давления воды, а за счет возникновения подъемной силы. Так же как крыло самолета. Лопасти пропеллера движутся поперек потока, а не увлекаются потоком в направлении течения.

Преимущества и недостатки различных систем самодельной мини ГЭС

Недостатки гирляндной ГЭС очевидны: большая материалоемкость, опасность для окружающих (длинный подводный трос, скрытые в воде роторы, перегораживание реки), низкий КПД.

Гирляндная ГЭС – это своего рода небольшая плотина. Целесообразно использовать в безлюдных, удаленных местах с соответствующими предупредительными знаками.

Возможно потребуется разрешение властей и экологов. Второй вариант - небольшой ручей у Вас в огороде.

Ротор Дарье - сложен в расчете и изготовлении.

В начале работы его нужно раскрутить. Но он привлекателен тем, что ось ротора расположена вертикально и отбор мощности можно производить над водой, без дополнительных передач. Такой ротор будет вращаться при любом изменении направления потока - это плюс.

Наибольшее распространение при построении самодельных гидроэлектростанций получили схемы пропеллера и водяного колеса.

Так как эти варианты сравнительно просты в изготовлении, требуют минимальных расчетов и реализуются при минимальных затратах, имеют высокий КПД, просты в настройке и эксплуатации.

Пример простейшей мини-ГЭС

Простейшую гидроэлектростанцию можно быстро соорудить из обычного велосипеда с динамкой для велофары.

Из оцинкованного железа или не толстого листового алюминия надо заготовить несколько лопастей (2-3). Лопасти должны быть длиной от обода колеса до втулки, а шириной 2-4 см.

Эти лопасти устанавливаются между спицами любым подручным способом или заранее заготовленными креплениями.

Если вы используете две лопасти, то установите их напротив друг друга.

Если захотите добавить большее количество лопастей, то разделите окружность колеса на число лопастей и установите их через равные промежутки. С глубиной погружения колеса с лопастями в воду можете поэкспериментировать. Обычно его погружают от одной трети до половины.

Вариант походной ветроэлектростанции рассматривался ранее.

Такая микро ГЭС не занимает много места и отлично послужит велотуристам - главное наличие ручья или речушки - что обычно и есть в месте разбивки лагеря.

Мини ГЭС из велосипеда сможет освещать палатку и заряжать сотовые телефоны или другие гаджеты.

Источник

самодельныйсвободнопоточная

Подробно описывать, для чего может понадобиться микро-ГЭС , смысла нет – ответы на этот вопрос очевидны. Коротко скажем лишь, что из общеизвестных альтернативных источников энергии – солнечные генераторы, ветро- и гидроэлектростанции – последние являются потенциально наиболее мощными при меньшей себестоимости. Кроме того, вы не зависите от погодных факторов – ветра или солнца.

Значимым плюсом самодельной микро-ГЭС является также относительная дешевизна и доступность материалов. Покупка заводской ГЭС может обойтись вам в 1000-10000$,

Однако именно мини-ГЭС являются наиболее сложными в проектировании и изготовлении, особенно для неподготовленного человека. Например, энтузиасту Лукмону Ахмедову (Таджикистан) для изготовления собственного варианта электростанции потребовалось около 2 лет. При написании данной статьи мы постарались изложить достаточно подробно и наглядно весь процесс, по шагам. Надеемся, с нашей помощью у вас это займет гораздо меньше времени.

Виды микро ГЭС

Отметим сразу, что в этой статье речь будет идти об изготовлении бесплотинных микро-ГЭС своими руками. Устройство плотины – сложная и дорогостоящая задача, также вам придется потратить немало времени на согласование с властями. С бесплотинными ГЭС все гораздо проще: они экологичнее, а их основной недостаток – меньшая мощность – не критичен, ведь энергия нам нужна для частных, относительно небольших, нужд.

Отдельно отметим, что под «микро-ГЭС» подразумевают агрегат мощностью до 100КВт.

Итак, бесплотинные ГЭС бывают 4 видов: «гирляндная» ГЭС, «водяное колесо», ротор Дарье и «пропеллерная». Также бесплотинные ГЭС часто называют «проточными» или «свободнопроточными».

  • Гирляндная ГЭС была разработана советским инженером Блиновым в середине XX века. Она состоит из небольших турбин — гидровингроторов, нанизанных в виде бус на тросе, который переброшен через реку. Один конец троса прикреплен к опорному подшипнику, а второй — вращает вал генератора. Трос в данном агрегате выполняет задачу вала, чье вращение которого передается к валу генератора. К минусам гирляндной ГЭС можно отнести относительную дороговизну, опасность для окружающих (вполне вероятно, такой проект придется согласовывать с властями, соседями) и невысокую выходную мощность.
  • Водяное колесо устанавливается перпендикулярно поверхности воды и погружено в воду менее, чем наполовину. Приводить его в действие можно двумя способами: либо течение воды давит на лопасти в нижней части колеса, заставляя его вращаться, либо же поток воды падает на колесо сверху (см. фото ниже). КПД последнего варианта намного выше. При изготовлении турбины этого типа основным вопросом является грамотный выбор формы лопастей, которая позволит наиболее эффективно использовать энергию воды.
  • Ротор Дарье представляет собой вертикальный ротор с лопастями специальной конструкции. Благодаря ей поток воды давит на лопасти с разной силой, за счет чего и происходит вращение. Данный эффект можно сравнить с подъемной силой крыла самолета, которая возникает вследствие разности давлений над и под крылом.
  • Пропеллер по своей конструкции схож с пропеллером ветрогенератора (отсюда, собственно, и название) или винтом корабля. Однако лопасти подводного пропеллера, как правило, намного уже, что позволяет использовать энергию потока более эффективно. Например, для реки со скорость течения 1-2 м/с достаточно ширины в 2 сантиметра. Подобная конструкция хорошо подходит для быстрых и глубоких рек. Важный момент: для безопасности купальщиков и туристов обязательно установите заграждение и предупреждающий буй. Установка крутится достаточно быстро и может нанести серьезные травмы

На наш взгляд, для изготовления микро-ГЭС своими руками оптимально использовать пропеллерную конструкцию или конструкцию типа «водяное колесо». Отметим, что в агрегатах заводского производства турбины обоих типов имеют достаточно сложную форму (т.н. «турбина Каплана, «турбина Пелтона» и др.), позволяющую получить максимум КПД для различных типов потока. Однако при «домашнем» производстве изготовить такие турбины сложно.

Немного теории о микро ГЭС и базовые расчеты.

Следующим шагом является расчет и измерение скорости потока. Определять ее на глазок весьма рискованно – очень легко ошибиться, поэтому отмерьте вдоль берега 10-20 метров, бросьте в воду поплавок (щепку, небольшой мячик) и отмерьте время, за которое щепка проплывет дистанцию. Делим дистанцию на время – получаем скорость течения. Как показывает практика, если она меньше 1 м/с – устройство микро-ГЭС в данном потоке может быть неоправданным. Если мы планируем получать энергию за счет перепада высот, то мощность можно примерно рассчитать по следующей формуле:

Мощность N=k*9.81*1000*Q*H,

где k — КПД системы (обычно составляет 20%-50%); 9,81 (м/сек2) — ускорение свободного падения; H – перепад высот;

Q — расход воды (м3/сек); 1000 — плотность воды (кг/м3).

Как видно из формулы, мощность прямо пропорционально зависит от скорости. Если река имеет несколько рукавов, ответвлений, то стоит измерить скорость во всех и выбрать поток, имеющий наибольшую скорость и глубину. Учтите, что измерения необходимо делать в безветренную погоду.

Найти ширину и глубину реки в метрах. Упрощенно принимаем, что поток в сечении имеет форму прямоугольника, тогда умножив площадь сечения на его скорость, получаем расход:

Q = a*b*v. Т.к. на самом деле сечение водяного потока имеет меньшую площадь, то полученное значение стоит умножить на 70%-80%.

Если у нас уже есть готовый генератор, то можно оценить возможный рабочий радиус колеса и необходимый коэффициент мультипликации.

Радиус колеса (м) = Скорость потока (м/с) / Частота вращения колеса (Гц). Частоту вращения колеса мы можем оценить, зная рабочую частоту генератора (обычно в «об/мин») и предполагаемый коэффициент редукции.

Практика: строим микро-ГЭС сами

Теперь пришла очередь спроектировать и изготовить турбину. Ниже мы опишем особенности постройки микро-ГЭС типа «водяное колесо». Данную конструкцию выгодно использовать, если у нас есть возможность организовать перепад высот для потока (или такой перепад уже существует, например, это сточная труба из пруда). Как уже было сказано выше, особое внимание следует обратить на форму лопастей. Если использовать колесо с лопастями в виде плашек (см. фото ниже, в данном случае лопасти установлены под углом 45 градусов), то КПД такой установки будет очень невелик.

Лучше использовать лопасти вогнутой формы, которые можно получить, например, из ПВХ или металлической трубы, разрезав ее вдоль на 2 или 4 части. Как показывает практика, лопастей должно быть не меньше 16. Чтобы разрезать трубу максимально прямо, проведите вдоль поверхности маркировочные линии. Также можно прикрепить 2 параллельно расположенных деревянных бруска и использовать их как направляющие. Поверхность лопаток следует отшлифовать, иначе часть энергии воды будет тратиться на трение.

В качестве самого колеса можно использовать пустую катушку из-под кабеля, либо же просто изготовить диски соответствующего диаметра. Расстояние между дисками соответствует длине лопастей. Соединяем диски вместе и вырезаем полукруглые пазы для установки лопастей. Как вариант, лопасти можно приварить. Если конструкция небольшого размера, то для защиты от мусора можно использовать сетку, прикрепленную перед колесом. В случае, когда вода падает на лопасти сверху, но при этом поток достаточно широкий есть смысл изготовить сопло (см. фото ниже), благодаря которому будет использоваться вся энергия потока. На фотографии выше видно, что сточная труба узкая сама по себе, поэтому необходимости в применении сопла нет. В любом случае поток должен падать на водяное колесо сверху, примерно на 10 часов, если представить колесо в виде циферблата часов.

В качестве опорной конструкции можно использовать сварную металлическую раму. Для повышения КПД попробуйте, если есть такая возможность, поварьировать расположение колеса: ближе-дальше, выше-ниже относительно входящего потока.

Теперь нам необходимо смонтировать повышающий редуктор (мультипликатор). Подойдет как шестеренчатый, так и цепной. Какой именно мультипликатор применить, и какой коэффициент редуцирования необходим – зависит от мощности потока, эксплуатационных характеристик колеса и генератора. Рассчитать коэффициент очень просто – рабочее количество оборотов генератора делим на количество оборотов колеса в минуту. Иногда приходится использовать 2 редуктора разных типов. Для передачи вращения от колеса на редуктор или генератор используется труба, карданный вал или другой похожий элемент.

В качестве генератора подбирается любой подходящий двигатель, при этом желательно, чтобы он был синхронным. Для асинхронного придется добавлять конденсаторы, работающие по схеме «звезда» или «треугольник». Характеристики конденсаторов зависят от напряжения сети и параметров двигателя. Основной проблемой при использовании асинхронного двигателя будет поддержание постоянного количества оборотов. Если же оно изменяется – придется менять и конденсаторы, что может быть весьма хлопотным.

Регулярный рост цен на электроэнергию заставляет многих задумываться над вопросом альтернативных источников получения электричества. Одно из лучших решений в данном случае - гидроэлектростанция. Поиски решения данного вопроса касаются не только масштабов страны. Все чаще можно увидеть мини-гидроэлектростанции для дома (дачи). Затраты в таком случае будут только на строительство и техническое обслуживание. Минус подобного сооружения в том, что его возведение возможно только в определенных условиях. Необходимо наличие водяного потока. К тому же возведение данной конструкции у себя во дворе требует разрешения местных органов власти.

Схема мини-гидроэлектростанции

  • Русловые, характерные для равнин. Они устанавливаются на реках с несильным потоком.
  • Стационарные используют энергию водных рек с быстрым потоком воды.
  • ГЭС, устанавливающиеся в местах перепада водного потока. Встречаются чаще всего в промышленных организациях.
  • Мобильные, которые строятся с применением армированного рукава.

Для строительства ГЭС достаточно даже небольшого ручья, протекающего по участку. Владельцы домов с центральным водоснабжением не должны отчаиваться.

Одной из американских компаний разработана станция, которую можно встраивать в водоснабжающую систему дома. В водопровод встраивается турбина маленьких размеров, которая приходит в движение за счет потока воды, двигающегося самотеком. Это снижает скорость потока воды, но снижает себестоимость электроэнергии. К тому же данная установка полностью безопасна.

Устраиваются даже мини-гидроэлектростанции в канализационной трубе. Но их строительство требует создания определенных условий. Вода по трубе должна стекать естественным образом за счет уклона. Второе требование - диаметр трубы должен быть подходящим для устройства оборудования. А это невозможно сделать в отдельно стоящем доме.

Классификация мини-ГЭС

Мини-гидроэлектростанции (дома, в которых они используются, в большинстве относятся к частному сектору) чаще всего относятся к одному из следующих типов, которые различаются принципом работы:

  • Водяное колесо - традиционный тип, который наиболее прост в исполнении.
  • Пропеллер. Используют в тех случаях, когда река имеет русло шириной более десяти метров.
  • Гирлянда устанавливается на реках с несильным потоком. Для усиления скорости течения воды используют дополнительные сооружения.
  • Ротор Дарье устанавливается обычно на промышленных предприятиях.

Распространенность этих вариантов обусловлена тем, что они не требуют строительства плотины.

Водяное колесо

Это классический вид ГЭС, который наиболее популярен для частного сектора. Мини-гидроэлектростанции данного типа представляют собой большое колесо, способное вращаться. Его лопасти опускаются в воду. Вся остальная часть конструкции находится над руслом, заставляя двигаться весь механизм. Мощность передается через гидропривод генератору, вырабатывающему ток.

Пропеллерная станция

На раме в вертикальном положении располагается ротор и подводный ветряк, опускаемый под воду. Ветряк имеет лопасти, которые вращаются под воздействием потока воды. Лучшее сопротивление оказывают лопасти шириной два сантиметра (при быстром потоке, скорость которого, тем не менее, не превышает двух метров в секунду).

В данном случае лопасти приводятся в движение за счет возникающей а не за счет давления воды. Причем направление движения лопастей перпендикулярно направлению течения потока. Этот процесс похож на работу ветровых электростанций, только работает под водой.

Гирляндная ГЭС

Данного типа мини-гидроэлектростанции представляют собой трос, натянутый над руслом и закрепленный в опорном подшипнике. На нем в виде гирлянды навешены и жестко закреплены турбины небольшого размера и веса (гидровингроторы). Они состоят из двух полуцилиндров. За счет совмещения осей при опускании в воду в них создается крутящий момент. Это приводит к тому, что трос изгибается, натягивается и начинает вращаться. В данной ситуации трос можно сравнивать с валом, который служит для передачи мощности. Один из концов троса соединен с редуктором. На него и передается мощность от вращения троса и гидровингроторов.

Повысить мощность станции поможет наличие нескольких «гирлянд». Их можно соединить между собой. Даже это не сильно повышает КПД данной ГЭС. Это один из минусов подобного сооружения.

Еще один недостаток данного вида - создаваемая им опасность для окружающих. Подобного рода станции допустимо использовать только в безлюдных местах. Наличие предупредительных знаков обязательно.

Ротор Дарье

Мини-гидроэлектростанция для частного дома данного вида названа так в честь ее разработчика - Жоржа Дарье. Запатентована данная конструкция была еще в 1931 году. Представляет собой ротор, на котором находятся лопасти. Для каждой из лопастей в индивидуальном порядке подбираются нужные параметры. Ротор опускается под воду в вертикальном положении. Лопасти вращаются за счет перепада давления, возникающего под действием протекания по их поверхности воды. Этот процесс подобен подъемной силе, заставляющей самолеты взлетать.

Данный вид ГЭС имеет хороший показатель КПД. Втрое преимущество - направление потока не имеет значение.

Из недостатков данного можно выделить сложную конструкцию и непростой монтаж.

Преимущества мини-ГЭС

Независимо от вида конструкции мини-гидроэлектростанции обладают рядом преимуществ:

  • Экологически безопасны, не вырабатывают вредных для атмосферы веществ.
  • Процесс получения электричества проходит без образования шума.
  • Вода остается чистой.
  • Электричество вырабатывается постоянно, вне зависимости от времени суток или погодных условий.
  • Для обустройства станции достаточно даже небольшого ручья.
  • Излишек электроэнергии можно продать соседям.
  • Не нужно много разрешающей документации.

Мини-гидроэлектростанция своими руками

Построить для получения электроэнергии можно самостоятельно. Для частного дома достаточно двадцати киловатт в сутки. С таким значением справится даже мини-ГЭС, собранная своими руками. Но при этом следует помнить, что данный процесс характеризуется рядом особенностей:

  • Точные расчеты провести достаточно трудно.
  • Размеры, толщина элементов выбирается «на глаз», только опытным путем.
  • Самодельные сооружения не имеют защитных элементов, что приводит к частым поломкам и связанным с этим затратам.

Поэтому если нет опыта и определенных знаний в данной сфере, лучше отказаться от идеи подобного рода. Дешевле может оказаться приобретение уже готовой станции.

Если все же решаетесь делать все своими руками, то начинать необходимо с измерения скорости потока воды в реке. Ведь от этого зависит мощность, которую можно получить. Если скорость будет меньше одного метра в секунду, то строительство мини-гидроэлектростанции в данном месте не оправдает себя.

Еще один этап, который нельзя опускать - это расчеты. Необходимо тщательно рассчитать размер затрат, которые уйдут на строительство станции. В результате может оказаться, что гидроэлектростанция - не лучший вариант. Тогда стоит обратить внимание на другие виды альтернативной электроэнергии.

Мини-гидроэлектростанция может стать оптимальным решением в вопросе экономии затрат на электроэнергию. Для ее строительства необходимо наличие реки недалеко от дома. В зависимости от желаемых характеристик можно подобрать подходящий вариант ГЭС. При правильном подходе выполнить подобное сооружение можно даже своими руками.

Именно на этом месте Мы попытаемся сделать нашу новую гидроэлектростанцию. Ранее на этом пруду уже были предприняты попытки создания самодельной ГЭС из беличьего колеса с ременной передачей на генератор (она кстати показана на фото в конце статьи), который давал ток около 1Ампера, этого было достаточно для питания нескольких лампочек и радиоприемника в нашем маленьком охотничьем домиком. Данная электростанция успешно проработала более 2-х лет, и мы решили создать на месте этой мини плотины более мощный вариант аналогичный вариант гидроэлектростанции.

Для изготовления мини плотинной ГЭС на м понадобится:

Обрезки листового металла и уголки;
- Диски для колеса (использовались от корпуса вышедшего из строя генератора фирмы Onan);
- Генератор (его сделали из двух дисков диаметром 11 дюймов от дисковых тормозов Доджа);
- Ведущий вал и подшипники – вроде бы тоже от Доджа, мы не помним точно, так сняли их своими руками с какой-то другой самоделки;
- медная проволока сечением примерно 15 мм;
- немного фанеры;
- магниты;
- полистироловая смола для заливки ротора и статора.

Процесс изготовления

Лопасти ведущего колеса делаем из разрезанной на 4 части 4-х дюймовой стальной трубы.

Мы сделали шаблон, который помог заложить из отверстия, Боковые поверхности колеса – диски диаметром 12 дюймов.

Делаем шаблон, с помощью которого размечаем отверстия для ступиц (5 штук), а также позицию угол лопастей. В таком колесе, если посмотреть сбоку, вода бьет сверху, примерно в районе 10 часов, проходит через середину колеса и выходит внизу, на 5 часах, так что вода бьет по колесу два раза. Мы пересмотрели большое число фотографий и попытались смоделировать ширину и угол лопастей. На фото сверху – разметка для краев лопастей и отверстия для крепления колеса к генератору. В колесе 16 лопастей.

Шаблон приклеили к одному из дисков – будущей боковой поверхности колеса, оба диска мы зажали вместе. На фото выше – сверление маленьких отверстий для позиционирования лопастей.

Делаем зазор между дисками в 10 дюймов, используя шпильки со сплошной резьбой, и максимально аккуратно выравниваем их перед установкой лопастей.

Процесс сварки колеса показан на фото выше. Очень важно, чтобы лопасти сделаны из оцинкованной стальной трубы. Перед сваркой необходимо зачистить цинк с краев лопастей, так как при сварке гальванизированный металл выделяет токсичный газ, чего мы стараемся избежать.

Готовое колесо нашей будущей гэс, без генератора. На, другой стороне колеса (противоположной генератору) в боковом диске есть отверстие в 4 дюйма диаметром – для удобства прикручивания к генератору, а также для очистки, чтобы засунуть руку и вынуть палки и прочий мусор, который может занести внутрь вода.

Сопло имеет такую же ширину (10 дюймов), что и колесо, и около 1 дюйма высоты с того конца, где выходит вода. Площадь сопла чуть меньше, чем 4-х дюймовая труба, на которую сопло насажено. На фото сверху – мы гнем металлический лист своими руками для сопла.

Насаживаем колесо на ось, наша ГЭС практически готова, осталось только сделать и установить генератор. Вся конструкция подвижная. Мы можем двигать сопло вперед, назад, вверх, вниз. Колесо и генератор могут двигаться вперед и назад.

Изготовление генератора для нашей ГЭС. >

Делаем обмотку статора и подготавливаем для заливки. Обмотка состоит из 9 катушек, каждая катушка состоит из 125 витков медной проволоки сечением 1,5 мм. Каждая фаза состоит из 3-х последовательно соединенных катушек, мы вывели наружу 6 концов, так что можем сделать соединение как звездой, так и треугольником.

А это статор – после заливки. (Для его заливки используем полиэстеровую смолу) Его диаметр 14 дюймов (35.5 см) , толщина 0,5 дюйма 1,3 см.

Делаем шаблон из фанеры – для разметки под магниты.

На фото – шаблон и один из тормозных дисков (будущий ротор).

Расставляем по подготовленному шаблону 12 магнитов размером 2,5 х 5 см, толщиной 1,3 см.

Заливаем ротор полиэстеровой смолой, и когда смола засохнет ротор будет готов к работе.

Вот так выглядит наша почти законченная гидроэлектростанция в сборе с генератором.

Фото с другой стороны. Под алюминиевой крышкой – два мостовых выпрямителя из 3-х фазного переменного тока в постоянный. Шкала амперметра – до 6А. В этом состоянии, когда воздушный зазор между магнитными роторами уменьшен до предела, машина выдает 12,5 вольт при 38 об/мин.

В заднем магнитном роторе, есть 3 настроечных винта для регулирования воздушного зазора, для того, чтобы генератор мог вращаться быстрее по необходимости, в надежде найти оптимум.

На досуге, участие в создании ГЭС принимало 17 человек.

Приступаем к изготовлению крепежных элементов, для этого сначала очищаем с листового металла и уголков всю ржавчину, грунтуем и красим, это конечно не обязательно, но так красивее, да и вид товарный будет.

Наш генератор с водяным колесом готов, осталось только установить его!

Было бы неплохо соорудить экран от брызг для генератора, который вращался бы вместе с колесом, но мы так и не нашли подходящего материала. Поэтому решили сделать это потом, если ГЭС заработает.

Еще фото генератора с водяным колесом. Сопло еще не установлено, оно сзади в кузове и мы скоро его поставим.

На фото – место где мы хотим ее поставить. 4-х дюймовая труба выходит снизу запруды, перепад около 3-х футов. Мы забираем только небольшую часть водяного потока.

Эта наша старая микро-ГЭС, проработавшая 2 года, включая зимы. Ее хватало на 1 Ампер (12 Ватт) или около того. Это беличье колесо, с ременной передачей на движок от компьютерного стримера фирмы Ametek. Натяжение ремня критично для успешной работы, его надо часто настраивать. Мы надеемся, что соорудили нечто лучше этого.

Вот и наша ГЭС на месте, производим ее настройку. Наконец, мы приходим к теоретически предсказанным параметрам: лучший результат получается, когда вода входит на 10 часов колесного диска, и выходит в районе 5 часов.

Заработало! Выход около 2 Ампер (1,9 если быть точным). Увеличить ток не удается. Настройки производить нелегко – каждое передвижение колеса требует соответствующего передвижения сопла, и наоборот. Еще мы можем изменять воздушный зазор и менять соединение со звезды на треугольник. Результат явно лучше у звезды – мощность выше, чем у треугольника при тех же оборотах. В итоге мы остановились на звезде, с зазором 1,25 дюйма (довольно много).

Машинку можно сделать чуть дешевле, если использовать менее мощные магниты и меньший воздушный зазор… или она может выдавать больше тока с теми же магнитами, меньшим зазором и катушками с большим количеством витков. Когда-нибудь мы этим займемся. А пока – колесо выдает 160 об/мин на холостом ходу, 110 об/мин под нагрузкой, производя 1,9 А х 12В.
Удовольствия мы получили море, было очень весело, да и мини-ГЭС неплохо работает. Нам все-таки нужен экран на генератор – в речке полно магнетитового песка! Каждые несколько часов приходится очищать магнитные роторы от песчаных нарастаний. Надо или ставить экран, или приделать пару мощных магнитов на входе в трубу.

По материалам сайта: Otherpower.com